

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-12/0544 of 15 December 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Mungo Injection system MIT-SE Plus or MIT-COOL Plus for masonry

Injection system for use in masonry

Mungo Befestigungstechnik AG Bornfeldstrasse 2 4603 OLTEN SCHWEIZ

Werk 13 / Plant 13

61 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal Injection Anchors for Use in Masonry", ETAG 029, April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-12/0544 English translation prepared by DIBt

Page 2 of 61 | 15 December 2016

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 61 | 15 December 2016

Specific Part

1 Technical description of the product

The Mungo Injection system MIT-SE Plus or MIT-COOL Plus is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar MIT-SE Plus or MIT-COOL Plus, a perforated sleeve and an anchor rod with hexagon nut and washer. The steel elements are made of zinc coated steel or stainless steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The Illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for steel elements	See Annex C2
Characteristic resistance for anchors in masonry units	See Annex C3 – C45
Displacements under shear and tension loads	See Annex C4 – C45
Reduction Factor for job site tests (β-Factor)	See Annex C1
Edge distances and spacing	See Annex C3 – C45
Group factor for group fastenings	See Annex C3 – C45

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

European Technical Assessment ETA-12/0544

Page 4 of 61 | 15 December 2016

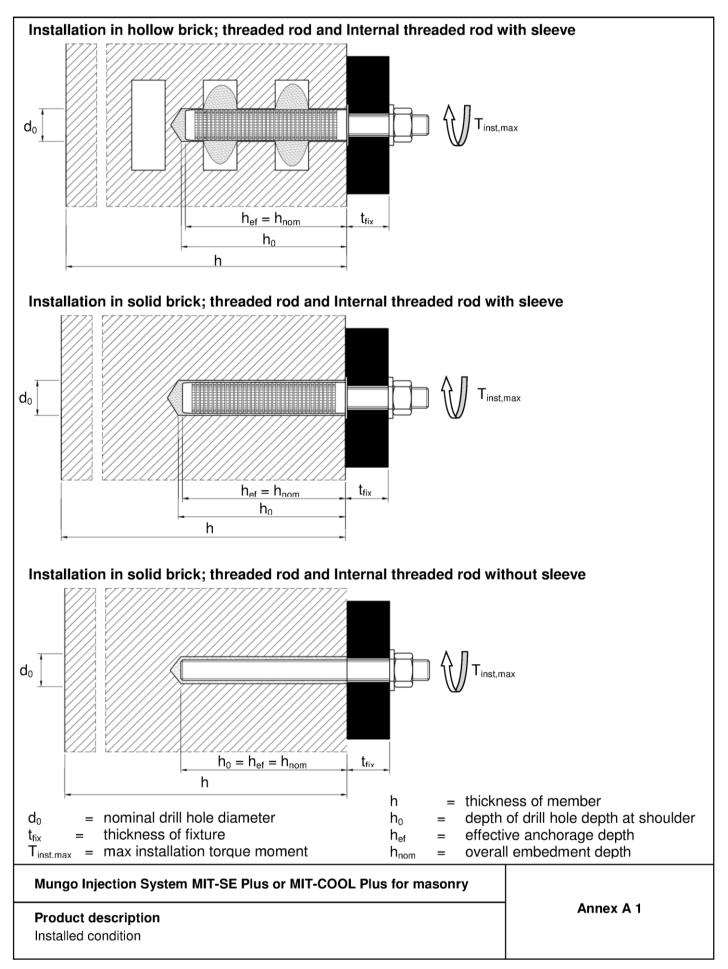
English translation prepared by DIBt

3.4 Safety in use (BWR 4)

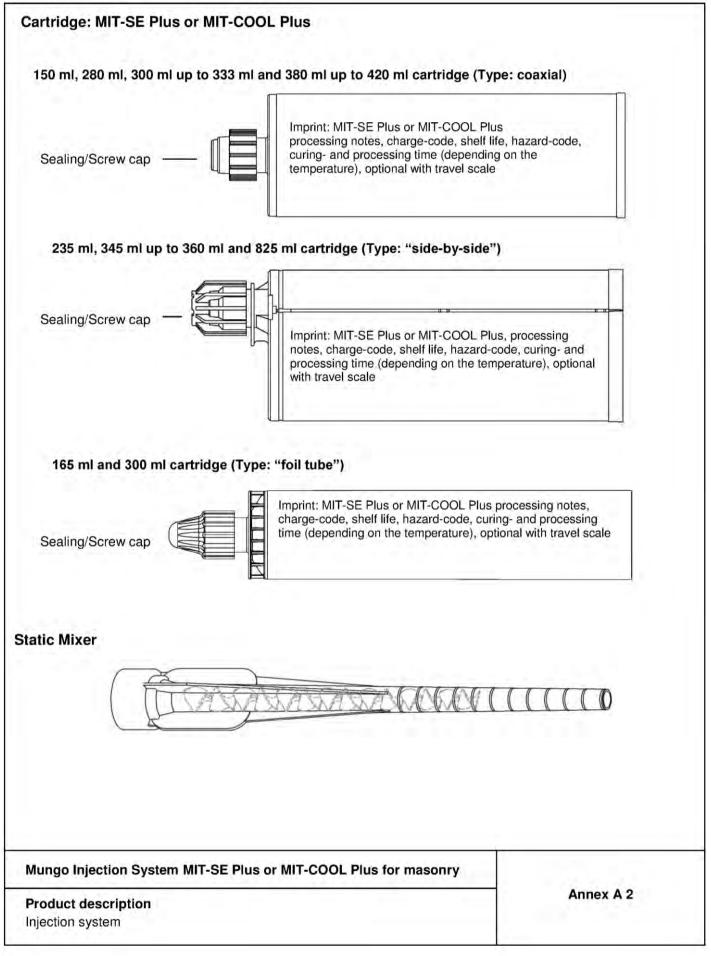
The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 029, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [97/177/EC]. The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 15 December 2016 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department *beglaubigt:* Baderschneider

Page 7 of European Technical Assessment ETA-12/0544 of 15 December 2016

Threaded rod M8, M10, M12, M16	
Mark of the embedment depth	
\ I _{ges}	
$h_{ef} = h_{nom}$	D D
nut washer	d. =
	5
 Materials, dimensions and mechanical properties acc. to Table A1 Inspection certificate 3.1 acc. to EN 10204:2004. The document shall be store Marking of embedment depth 	ed.
Internal threaded rod IG-M6, IG-M8, IG-M10	
Mark the producer	
N	
	5
P	= dnom
	Ū Ū
- her	
Marking: e.g. <>> M8	
Ť	
Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry	4000
Product description	Annex A 3
Anchor rods	

	Material					
Steel, zinc plated ≥ 5 μm acc. to EN ISO 4042: hot-dip galvanised ≥ 40 μm acc. to EN ISO 146						
Anchor rod	Steel, EN 10087:1998 or EN 10263:2001 Property class 4.6, 4.8, 5.6, 5.8, 8.8 acc. EN 1993-1-8:2005+AC:2009 A _s > 8% fracture elongation					
Hexagon nut, EN ISO 4032:2012	Steel acc. EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6, 4.8 rod) EN ISO 898-2:2012 Property class 5 (for class 5.6, 5.8 rod) EN ISO 898-2:2012 Property class 8 (for class 8.8 rod) EN ISO 898-2:2012					
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised					
Internal threaded rod	Steel, zinc plated Property class 5.6, 5.8 and 8.8 EN ISO 898-1:2013					
Stainless steel						
Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2014, Property class 70 EN ISO 3506-1:2009 Property class 80 EN ISO 3506-1:2009 Material 1.4401 / 1.4404 / 1.4571 EN 10088-1:2014,					
Hexagon nut, EN ISO 4032:2012	Property class 70 (for class 70 rod) EN ISO 3506-2:2009 Property class 80 (for class 80 rod) EN ISO 3506-2:2009					
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2014					
Internal threaded rod	Stainless steel: 1.4401 / 1.4404 / 1.4571, EN 10088-1:2014 Property class 70 (for class 70 rod) EN ISO 3506-1:2009					
High corrosion resistant steel (HCR)						
Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2014, Property class 70 EN ISO 3506-1:2009 Property class 80 EN ISO 3506-1:2009					
Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565, EN 10088-1:2014, Property class 70 (for class 70 rod) EN ISO 3506-2:2009 Property class 80 (for class 80 rod) EN ISO 3506-2:2009					
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:2014					
Internal threaded rod	Stainless steel: 1.4529 / 1.4565, EN 10088-1:2014 Property class 70 (for class 70 rod) EN ISO 3506-1:2009					
Plastic sleeve						
Perforated sleeve	Material: Polypropylene					

Table A2: Sleeve (Plastic)									
SH 12x80 SH 16x85 SH 20x85 d	3		L _s =	h _{ef} = h _{nom}					
SH 16x130 SH 20x130 SH 20x200 d _s			L _s = h _{ef} =	= h _{nom}					
Table A3: Sizes sleeve						-		-	
		S	leeve	12x80	16x85	16x130	20x85	20x130	20x200
Diameter of sleeve	d _s = d _{nor}		[mm]	12	16	16	20	20	20
Length of sleeve	Ls		[mm]	80	85	130	85	130	200
Effective anchorage depth	h _{et}		[mm]	80	85	130	85	130	200
Overall anchor embedment	h _{no}	n [[mm]	80	85	130	85	130	200
Table A4: Steel									
	Anchor	rod	IG-M6	IG-M8	IG-M10	M8	M10	M12	M16
Outside diameter of anchor	$d_1 = d_{nom}$	[mm]	10 ¹⁾	12 ¹⁾	16 ¹⁾	8	10	12	16
Diameter of internal thread	d ₂	[mm]	6	8	10	-	-	-	-
Thread engagement length Min/max	I _{IG}	[mm]	8/20	8/20	10/25	-	-	-	-
Total length of steel element	I _{ges}	[mm]		sleeve: hef		hef + t _{fix} + 9,5	hef + t _{fix} + 11,5	hef + t _{fix} + 17,5	hef + t _f + 20,0
¹⁾ Internal threaded rod with me	etric exte	ernal thr					,.	, .	, .
Mungo Injection System M	IIT-SE	Plus o	r MIT-CO	OL Plus fo	or masonr	v			
Product description Sleeves							Ar	nnex A 5	

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Autoclaved Aerated Concrete (Use category d) according to Annex B2
- Solid brick masonry (Use category b), according to Annex B2.
- Hollow brick masonry (use category c), according to Annex B2 and B3 _
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010. _
- For other bricks in solid masonry and in hollow or perforated masonry, the characteristic resistance of the anchor may be determined by job site tests according to ETAG 029, Annex B under consideration of the B-factor according to Annex C1, Table C1.

Note: The characteristic resistance for solid bricks and autoclaved aerated concrete are also valid for larger brick sizes and larger compressive strength of the masonry unit.

Temperature Range:

- $T_a: -40^{\circ}C$ to $+40^{\circ}C$ (max. short term temperature $+40^{\circ}C$ and max. long term temperature $+24^{\circ}C$)
- _ T_b : - 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)
- T_c : 40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C)

Use conditions (Environmental conditions):

- Dry and wet structure (regarding injection mortar).
- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Use categories in respect of installation and use:

- Category d/d: Installation and use in dry masonry
- Category w/w: Installation and use in dry or wet masonry (incl. w/d installation in wet masonry and use in drv masonrv)

Design:

- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.
- The anchorages are designed in accordance with the ETAG 029, Annex C, Design method A under the responsibility of an engineer experienced in anchorages and masonry work.
- N_{Rk,p} = N_{Rk,b} see Annex C4 to C45; N_{Rk,s} see Annex C3; N_{Rk,pb} see ETAG 029, Annex C
- $V_{Rk,b}$ and $V_{Rk,c}$ see Annex C4 to C45; $V_{Rk,s}$ see Annex C3; $V_{Rk,pb}$ see ETAG 029, Annex C
- For application with sleeve with drill bit size ≤ 15mm installed in joints not filled with mortar:
 - 0
 - $\begin{array}{l} N_{\text{Rk},p,j} = 0,18 \ ^* \ N_{\text{Rk},p} \ \text{and} \ N_{\text{Rk},b,j} = 0,18 \ ^* \ N_{\text{Rk},b} \\ V_{\text{Rk},c,j} = 0,15 \ ^* \ V_{\text{Rk},c} \ \text{and} \ V_{\text{Rk},b,j} = 0,15 \ ^* \ V_{\text{Rk},b} \end{array} \begin{array}{l} (N_{\text{Rk},p} = N_{\text{Rk},b} \ \text{see Annex C4 to C45}) \\ (V_{\text{Rk},b} \ \text{and} \ V_{\text{Rk},c} \ \text{see Annex C4 to C45}) \end{array}$ 0

Application without sleeve installed in joints not filled with mortar is not allowed.

Installation:

- Dry or wet structures.
- Anchor Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the Internal threaded rod.

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry

Intended Use

Specifications

Annex B 1

Brick-No.	Brick type	Picture	Brick size length width height	Compressive strength	Bulk density	Sleeve - Anchor ty	pe	Annex
			[mm]	[N/mm ²]	[kg/dm ³]			
Auto	claved aerated co	ncrete units acco	ording EN 771	-4				
1	Autoclaved Aerated Concrete AAC6	15.	499 240 249	6	0,6	M8/M10/M12/M16/IG-M6/IG-M8/	IG-M10	C4 - C5
Calc	ium silicate masor	nry units accordi	ng EN 771-2			and and an internet of the second		
2	Calcium silicate solid brick KS-NF		240 115 71	10 20 27	2,0	M8/M10/M12/M16/IG-M6/IG-M8/ SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG- SH 20x130 – M12/M16/IG-M8/IG SH 20x200 – M12/M16/IG-M8/IG	M10 M10	C6 - C8
3	Calcium silicate hollow brick KSL-3DF		240 175 113	8 12 14	1,4	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG- SH 20x130 – M12/M16/IG-M8/IG SH 20x200 – M12/M16/IG-M8/IG	i-M10	C9 - C11
4	Calcium silicate hollow brick KSL-12DF	· terey	498 175 238	10 12 16	1,4	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG SH 20x130 – M12/M16/IG-M8/IG		C12 C14
Clay	masonry units ac	cording EN 771-	1			Contraction Constraints		
5	Clay solid brick Mz – DF		240 115 55	10 20 28	1,6	M8/M10/M12/M16/IG-M6/IG-M8/ SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG- SH 20x130 – M12/M16/IG-M8/IG SH 20x200 – M12/M16/IG-M8/IG	-M10 i-M10	C15 C17
6	Clay hollow brick Hlz-16DF		497 240 238	6 8 12 14	0,8	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG- SH 20x130 – M12/M16/IG-M8/IG SH 20x200 – M12/M16/IG-M8/IG	i-M10	C18 C20
7	Clay hollow brick Porotherm Homebric		500 200 299	4 6 10	0,7	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG SH 20x130 – M12/M16/IG-M8/IG		C21 - C23
Ir	Nungo Injection S Itended Use rick types and pro						ex B 2	

Brick-No.	Brick type	Picture	Brick size length width height	Compressive strength	Bulk density	Sleeve - Anchor type	Annex
•			[mm]	[N/mm ²]	[kg/dm ³]		
Clay	masonry units a	according EN 7	71-1				
8	Clay hollow brick BGV Thermo		500 200 314	4 6 10	0,6	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C24 C26
9	Clay hollow brick Calibric R+		500 6 SH 16x85 – M8/M10/IG-M6 200 9 0,6 SH 16x130 – M8/M10/IG-M6 314 12 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10		SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10	C27 C29	
10	Clay hollow brick Urbanbric	560 6 NH SH 12x80 - M8 SH 16x85 - M8/M10/IG-M6 SH 16x85 - M8/M10/IG-M6 SH 16x130 - M8/M10/IG-M6 SH 12x80 - M8 SH		C30 C32			
11	Clay hollow brick Brique creuse C40		500 200 200	4 8 12	0,7	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C33 C35
12	Clay hollow brick Blocchi Leggeri		250 120 250	4 6 8 12	0,6	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x200 – M12/M16/IG-M8/IG-M10	C36 C38
13	Clay hollow brick Doppio Uni		250 120 120	10 16 20 28	0,9	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x200 – M12/M16/IG-M8/IG-M10	C39 C41
Ligh	nt weight concre	te according EN	771-3				_
14	Hollow light weight concrete Bloc creux B40		494 200 190	4	0,8	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C42 C43
15	Solid light weight concrete		300 123 248	2	0,6	M8/M10/M12/M16/IG-M6/IG-M8/IG-M10 SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x200 – M12/M16/IG-M8/IG-M10	C44 C45
h	Mungo Injection ntended Use Brick types and p					nry Annex B 3	

Installation: Steel Brush

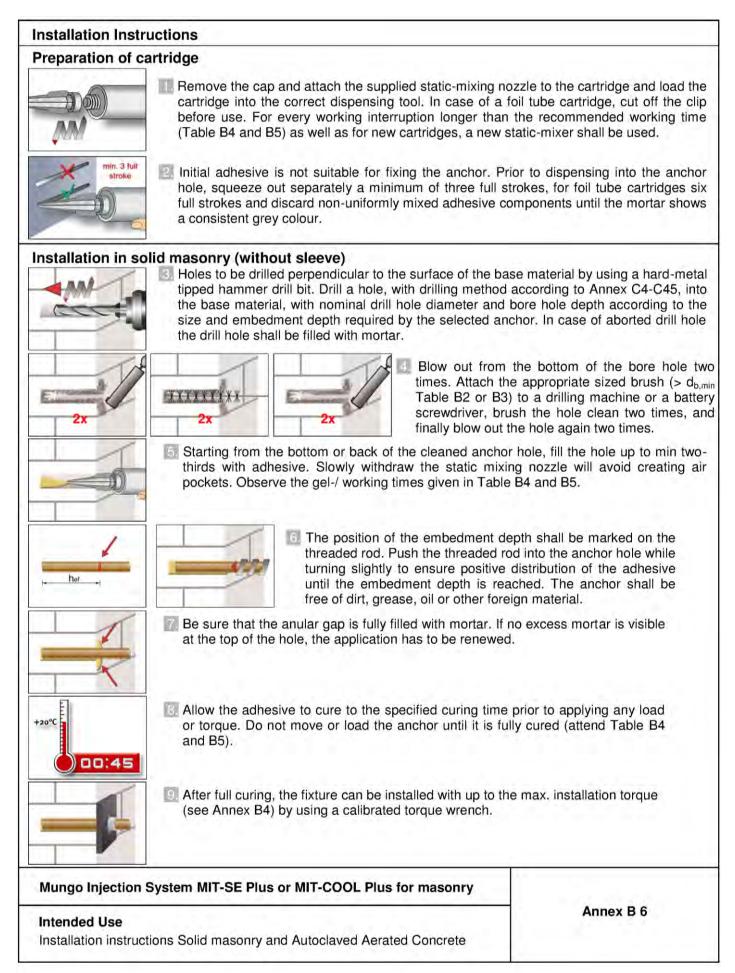
Table B2: Installation parameters in autoclaved aerated concrete AAC and solid masonry (without sleeve)

Anchor size			M8	M10	IG-M6	M12	IG-M8	M16	IG-M10
Nominal drill hole diameter	do	[mm]	10 12 14 18						18
Drill hole depth	h _o	[mm]	80 90 100 100						00
Effective anchorage depth	h _{ef}	[mm]	80 90 100 100						00
Minimum wall thickness	h _{min}	[mm]	h _{ef} + 30						
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12	7	14	9	18	12
Diameter of steel brush	d _b	[mm]	12	1	4	1	6	2	20
Minimum diameter of steel brush	d _{b,min}	[mm]	10,5	12	2,5	14	1,5	18	8,5
Max installation torque moment	T _{inst,max}	[Nm]			2 (1	4 for Mz	DF)		

Table B3: Installation parameters in solid and hollow masonry (with sleeve)

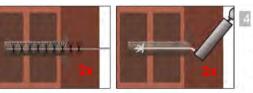
Anchor size			M8	M8 / M1	0 / IG-M6	M12 / M	16 / IG-M8	/ IG-M10
	\$	Sleeve	12x80	16x85	16x130	20x85	20x130	20x200
Nominal drill hole diameter	d ₀	[mm]	12	16	16	20	20	20
Drill hole depth	h ₀	[mm]	85	90	135	90	135	205
Effective anchorage depth	h _{ef}	[mm]	80	85	130	85	130	200
Minimum wall thickness	h _{min}	[mm]	115	115	175	115	175	240
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9		-M6) / 12 (M10)		//8) / 12 (IG //12) / 18 (I	
Diameter of steel brush	d _b	[mm]	14	1	8		22	
Minimum diameter of steel brush	d _{b,min}	[mm]	12,5	16	3,5		20,5	
Max installation torque moment	T _{inst,max}	[Nm]			2	2		

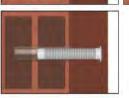
Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry


Intended Use

Installation parameters and cleaning brush

Temperature in the base material TTemperature cartridge10°Cto- 6°C+15°C to +40°		Gelling- / working time	Minimum curing time in dry base material ¹⁾
- 10°C to - 6°C	+15°C to +40°C	90 min	24 h
- 5°C to - 1°C		90 min	14 h
0°C to +4 °C		45 min	7 h
+ 5 °C to + 9 °C		25 min	2 h
10 °C to + 19 °C	+5°C to +40°C	15 min	80 min
20 °C to + 29 °C	+5°C 10 +40°C	6 min	45 min
30 °C to + 34 °C		4 min	25 min
35 °C to + 39 °C		2 min	20 min
+ 40°C		1,5 min	15 min
Temperature in the base material T 20 °C to - 16 °C	Temperature of cartridge	Gelling- / working time 75 min	Minimum curing time in dry base material ¹⁾ 24 h
		55 min	24 h 16 h
15 °C to - 11 °C 10 °C to - 6 °C		35 min	10 h
- 5 °C to - 1 °C	-20°C to +10°C	20 min	5 h
$\frac{1}{0}$ °C to $+4$ °C	-20° C 10 + 10° C	10 min	2,5 h
+ 5 °C to + 9 °C		6 min	80 min
+ 10°C		6 min	60 min

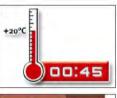




Installation in solid and hollow masonry (with sleeve)

Holes to be drilled perpendicular to the surface of the base material by using a hardmetal tipped hammer drill bit. Drill a hole, with drill method according to Annex C4 – C45, into the base material, with nominal drill hole diameter and bore hole depth according to the size and embedment depth required by the selected anchor.

Blow out from the bottom of the bore hole two times. Attach the appropriate sized brush (> $d_{b,min}$ Table B3) to a drilling machine or a battery screwdriver, brush the hole clean two times, and finally blow out the hole again two times.



5. Insert the perforated sleeve flush with the surface of the masonry or plaster. Only use sleeves that have the right length. Never cut the sleeve.

5 Starting from the bottom or back fill the sleeve with adhesive. For embedment depth equal to or larger than 130 mm an extension nozzle shall be used. For quantity of mortar attend cartridges label installation instructions. Observe the gel-/ working times given in Table B4 and B5.

The position of the embedment depth shall be marked on the threaded rod. Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.

8. Allow the adhesive to cure to the specified curing time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4 and B5).

In After full curing, the fixture can be installed with up to the max. installation torque (see Annex B4) by using a calibrated torque wrench.

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry

Intended Use

Installation instructions hollow brick

Annex B 7

Driek Ne	Installation & Use			β-fa	ctor				
Brick-No. and	category	T _a : 40°(C / 24°C	Т _ь : 80°0	C / 50°C	T₀: 120°	C / 72°C		
abbreviation		d/d	w/d w/w	d/d	w/d w/w	d/d	w/d w/w		
1 AAC6	For all sizes	0,95	0,86	0,81	0,73	0,81	0,73		
2	d₀ ≤ 14 mm	0,93	0,80	0,87	0,74	0,65	0,56		
KS-NF	d₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,65		
3	d₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,56		
KSL-3DF	d₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,65		
4	d₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,56		
KSL-12DF	d₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,65		
5 MZ-DF									
6 Hlz-16DF									
7 Porotherm Homebric									
8 BGV-Thermo									
9 Calibric R+	For all sizes	0,86	0,86	0,86	0,86	0,73	0,73		
10 Urbanbric									
11 Brique creuse C40									
12 Blocchi Leggeri									
13 Doppio Uni									
14	d₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,56		
Bloc creux B40	d₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,65		
15	d₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,56		
Solid light weight concrete	d₀≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,6		
Mungo Injection System	MIT-SE Plus or MIT-	COOL Plu	s for maso	nry					

 β -factors for job site testing under tension load

Size			IG-M6	IG-M8	IG-M10	M8	M10	M12	M16
Characteristic tension resistance					I				
steel, property class 4.6	N _{Rk,s}	[kN]	-	-	-	15	23	34	63
steel, property class 4.0	γ́Ms	[-]		-			2,	0	
steel, property class 4.8	$N_{Rk,s}$	[kN]	-	-	-	15	23	34	63
steel, property class 4.0	γMs	[-]		-			1,		
steel, property class 5.6	$N_{Rk,s}$	[kN]	10	18	29	18	29	42	79
	γMs	[-]		2,0			2,		
steel, property class 5.8	$N_{Rk,s}$	[kN]	10	17	29	18	29	42	79
	γMs	[-]		1,5			1,		
steel, property class 8.8	$N_{Rk,s}$	[kN]	16	27	46	29	46	67	126
	γMs	[-]		1,5			1,		
Stainless steel A4 / HCR, property class 70	$N_{Rk,s}$	[kN]	14	26	41	26	41	59	110
	γMs	[-]		1,87			1,8		
Stainless steel A4 / HCR, property class 80	$N_{Rk,s}$	[kN]	16	29	46	29	46	67	126
, p	γ̈́Ms	[-]		1,6			1,	6	
Characteristic shear resistance		_					_		_
steel, property class 4.6	$V_{Rk,s}$	[kN]	-	-	-	7	12	17	31
steel, property class 4.6	γ́Ms	[-]		-			1,6	67	
steel, property class 4.8	$V_{Rk,s}$	[kN]	-	-	-	7	12 17		31
steel, property class 4.0	γ́Ms	[-]		-			1,2	25	
steel, property class 5.6	$V_{Rk,s}$	[kN]	5	9	15	9	15 21		39
steel, property class 5.6	γMs	[-]		1,67			1,6	67	
steel, property class 5.8	$V_{Rk,s}$	[kN]	5	9	15	9	15	21	39
steel, property class 5.0	γMs	[-]		1,25			1,2	25	
steel, property class 8.8	$V_{Rk,s}$	[kN]	8	14	23	15	23	34	63
	γMs	[-]		1,25			1,2		
Stainless steel A4 / HCR, property class 70	$V_{Rk,s}$	[kN]	7	13	20	13	20	30	55
	γMs	[-]		1,56			1,	56	
Stainless steel A4 / HCR, property class 80	$V_{Rk,s}$	[kN]	8	15	23	15	23	34	63
	γMs	[-]		1,33			1,:	33	
Characteristic bending moment									
	$M_{Rk,s}$	[Nm]	-	-	-	15	30	52	133
steel, property class 4.6	γMs	[-]		-			1,6	57	
	M _{Rk,s}	[Nm]	-	-	-	15	30	52	133
steel, property class 4.8	γMs	[-]		-			1,2		
ataol, arabartu alaas 5 0	M _{Rk,s}	[Nm]	8	19	37	19	37	66	167
steel, property class 5.6	γMs	[-]		1,67	·		1,6		
ateal preparty along 5.0	M _{Rk,s}	[Nm]	8	19	37	19	37	66	167
steel, property class 5.8	γMs	[-]		1,25			1,2	25	
	M _{Rk,s}	[Nm]	12	30	60	30	60	105	266
steel, property class 8.8	γMs	[-]		1,25			1,2	25	
	M _{Rk,s}	[Nm]	11	26	52	26	52	92	233
Stainless steel A4 / HCR, property class 70	γMs	[-]		1,56			1,		
	M _{Rk,s}	[Nm]	12	30	60	30	60	105	266
Stainless steel A4 / HCR, property class 80	γMs	[-]	1	1,33	•		1,:		

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry

Performances

Z78775.16

Characteristic resistance under tension and shear load - steel failure

Cer		Cm	in
	Scr II	1	
		Sort Samo	
		Smin II	
		J. J	
	Ň	s s	
	Scr 11		
		Not the second s	
	T at	S	
	798	Scr II	
		Scr II	
h-			
- Character	istic odgo diotopoo		
	stic edge distance Edge distance		
	istic spacing		
min = Minimum :	spacing		
_{cr,II} ; (S _{min,II}) = Character	istic (minimum) spacing	for anchors placed parallel to	bed joint
$s_{cr,\perp}$; $(S_{min,\perp}) = Character$	stic (minimum) spacing	for anchors placed perpendicu	ular to bed joint
			1
Load direction	Tension load	Shear load parallel to free	Shear load perpendicul
nchor	Tension load	edge	to free edge
ing in additionation to be a set of the			
nchors places parallel to bed pint s _{cr.II} ; (s _{min.II})		V	V
nchors places perpendicular		V 🛔	V
b bed joint s _{cr,⊥;} (s _{min,⊥})			
g,N,II = Group factor in	case of tension load fo	r anchors placed parallel to the	bed joint
		anchors placed parallel to the b	
J. I.		r anchors placed perpendicula	
		anchors placed perpendicular t	
	$ _{k} = \alpha_{g,N} * N_{RK} $ $ _{k} = \alpha_{g,N,II} * \alpha_{g,N,\perp} * N_{RK} $	and $V_{Rk}^{g} = \alpha_{g,V} * V_{Rk}$ and $V_{Rk}^{g} = \alpha_{g,V,II} * \alpha_{g,V}$	* V
	$k = \alpha_{g,N,II} \alpha_{g,N,\perp} n_{RK}$ k: N _{Rk,b} or N _{Rk,b,j} for c _{cr})	and $\mathbf{v}_{Rk} = \alpha_{g,V,II} \alpha_{g,V,II}$	v,∸ V HK
	K: V _{Rk,c} ; V _{Rk,c,j} ; V _{Rk,b} or V _F	_{ak,b,j} for c _{cr})	
	h the relevant α_{g})		
ъ.			
Mungo Injection System MIT-S	E Plus or MIT-COOL I	Plus for masonry	
Mungo Injection System MIT-S	E Plus or MIT-COOL I	Plus for masonry	Annex C 3

	Brick type			Autoclaved Aerated Concrete						
Bulk density p [k	kg/dm ³]	0,6				In.				
	N/mm ²]	6					in the	-		
Code	winni j	EN 771-4					10.7			
Producer (country code)	e.g. Porit (DE)									
	ick dimensions [mm] 499 x 240 x 249					-				
Drilling method	fuuul	499 x 240 x 249 Rotary					-	1.0		
Table C4: Installation paran	neter	Trotaly								
Anchor size		E	M8	M10/IG-M6	M12/IG	-M8	M16/IG-M10			
Effective anchorage depth		[mm]	80	90	100		100			
Edge distance	Ccr		[mm]			1,5*hef				
	Cmi		[mm]			75				
Minimum edge distance		n,∨,II (Cmin,v,⊥) ¹⁾	[mm]		1.0	75 (1,5*h _{ef})			
Spacing	Scr		[mm]			3*hef	_			
Minimum spacing	Smi	n	[mm]			100				
Configuration II: anchors placed parallel to horizontal joint	enchor g	roup in case of te with c ≥ 125 (M8:120 1,5*hef			with s ≥ 100 3*hef	α _{g,N,II}		1,8		
Configuration II: anchors placed parallel to horizontal	e e e e e e e e e e e e e e e e e e e	with c ≥ 125 (M8:120			100	$\alpha_{g,N,II}$ $\alpha_{g,N,\perp}$	F	1.2.2.2		
Configuration II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint Table C6: Group factor for a		with c ≥ 125 (M8:120 1,5*hef 75 1,5*hef)	ng par	100 3*hef 100 3*hef rallel to free e	αg,N,⊥	(-)	2,0 1,4		
II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint Table C6: Group factor for a Configuration		with c ≥ 125 (M8:120 1,5*hef 75 1,5*hef roup in case of sh with c ≥)	ng par	100 3*hef 100 3*hef rallel to free e	αg,N,⊥	[-]	2,0 1,4 2,0		
Configuration II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint Table C6: Group factor for a		with c ≥ 125 (M8:120 1,5*hef 75 1,5*hef)	ng par	100 3*hef 100 3*hef rallel to free e	αg,N,⊥	(-)	2,0 1,4		

aced zontal			with c ≥		A	with	S≥				
zontai)(V		1,5*hef			3,0'	hef	α _{g,V,ii}		2,0	
ors placed dicular to ntal joint			1,5*hef			3,0	hef		α _{g,v,⊥} [-]		2,0
haracteristi	c values	s of resistan	ce under ter	sion	and sh	ear	oads				
			(Chara	acteristic	resi	stance				
					Use cat	egor	У				
Effective		d/d					w/w w/d	1			d/d w/d w/w
anchorage depth	40°C/2	4°C 80°C/5	0°C 120°C/7	2°C	40°C/24	4°C	80°C/50°C		120°C	72°C	For all temperatu range
h.e		Nous = N	$N_{Rk,b} = N_{Rk,p}^{(1)}$		N _{Bk,b} = N		1) Pk p ¹		V _{Rk,b} ²⁾³⁾		
	-	INHK,D - I	чнк,р		[kN		RK,D - T	нк,р			* HK,D
	-	Compre	essive stren	ath f				-			
80	2,5 (2						2,0 (1,	5)	1,5 (1,2)	6,0
90			,0) 2,5 (1,	,5)	3,5 (2,	,5)	3,0 (2,	0)			10,0
100	5,0 (3	,5) 4,0 (3	,0) 3,0 (2,	,5)	4,5 (3,	,0)) 3,5 (2		3,0 (2,5)	10,0
100	6,5 (4	,5) 5,5 (3	,5) 4,0 (3,	,0)	5,5 (4,	,0)	5,0 (3,	5)	4,0 (3,0)	10,0
		or greater, Fo	i steel 4.6 and	4.8 m	iuiupiy V _f	RK,6 D	7 0,8				
h _{ef}	N	δ _N / N	δΝΟ	č	õN∞		V		δνο		δγ∞
[mm]	[kN]	[mm/kN]	[mm]	D	nm]	[}	(N]		[mm]		[mm]
	00		0.40),32	1. 11	,3		0,8		1 1 1 1 2 2 2 2
80	0,9	0.10	0,16	C	1,52			_	0,0		1,20
80 90	1,4	0,18	0,16),52),51	-	,8		1,2		1,20
-		0,18		C		1					
	Effective anchorage depth [mm] 80 90 100 100 e valid for c _{cr} , ation of V _{Rk,c} s s are valid for	Effective anchorage depth 40°C/2 h _{ef} [mm] 80 2,5 (2 90 4,0 (2 100 5,0 (3 100 6,5 (4 e valid for c _{cr} , values in ation of V _{Rk,c} see ETAG s are valid for steel 5.6 bisplacements	Effective anchorage depth d/d $40^{\circ}C/24^{\circ}C$ $80^{\circ}C/50^{\circ}$ h _{ef} N _{Rk,b} = N [mm] Compression 80 2,5 (2,0) 2,5 (1, 90) 90 4,0 (2,5) 3,0 (2, 100) 100 5,0 (3,5) 4,0 (3, 100) e valid for c _{cr} , values in brackets are v ation of V _{Rk,c} see ETAG029, Annex C s are valid for steel 5.6 or greater. For	Effective anchorage depth d/d $40^{\circ}C/24^{\circ}C$ $80^{\circ}C/50^{\circ}C$ $120^{\circ}C/7$ h_{ef} $N_{Rk,b} = N_{Rk,p}^{1/3}$ $I_{20^{\circ}C/7}$ M_{ef} $N_{Rk,c} = N_{Rk,p}^{1/3}$ $I_{20^{\circ}C/7}$ M_{ef} $I_{20^{\circ}C/7}$ $I_{20^{\circ}C/7}$ $I_{20^{\circ}C/7}$ M_{ef} $N_{Rk,c} = N_{Rk,p}^{1/3}$ $I_{20^{\circ}C/7}$ $I_{20^{\circ}C/7}$ M_{ef} $I_{20^{\circ}C/7}$ $I_{20^{\circ}C/7}$ $I_{20^{\circ}C/7}$ $I_{20^{\circ}C/7}$ M_{ef} $I_{20^{\circ}C/7}$ $I_{20^{\circ}C/7}$ $I_{20^{\circ}C/7}$	Effective anchorage depth d/d $40^{\circ}C/24^{\circ}C$ $80^{\circ}C/50^{\circ}C$ $120^{\circ}C/72^{\circ}C$ h_{ef} $N_{Rk,b} = N_{Rk,p}^{1/}$ $I_{ef}^{1/}$ [mm] Compressive strength find 80 $2,5$ ($2,0$) $2,5$ ($1,5$) $2,0$ ($1,2$) 90 $4,0$ ($2,5$) $3,0$ ($2,0$) $2,5$ ($1,5$) 100 $5,0$ ($3,5$) $4,0$ ($3,0$) $3,0$ ($2,5$) 100 $6,5$ ($4,5$) $5,5$ ($3,5$) $4,0$ ($3,0$) e valid for c_{cr} , values in brackets are valid for single anchoration of $V_{Rk,c}$ see ETAG029, Annex C; s are valid for steel 5.6 or greater. For steel 4.6 and 4.8 m	Effective anchorage depth d/d Use cat $40^{\circ}C/24^{\circ}C$ $80^{\circ}C/50^{\circ}C$ $120^{\circ}C/72^{\circ}C$ $40^{\circ}C/24^{\circ}C$ h_{ef} $N_{Rk,b} = N_{Rk,p}^{1/3}$ [kN [mm] [kN 2,5 (2,0) 2,5 (1,5) 2,0 (1,2) 2,5 (1,5) 90 4,0 (2,5) 3,0 (2,0) 2,5 (1,5) 3,5 (2,1) 100 5,0 (3,5) 4,0 (3,0) 3,0 (2,5) 4,5 (3,1) 100 6,5 (4,5) 5,5 (3,5) 4,0 (3,0) 5,5 (4,5) e valid for c _{cr} , values in brackets are valid for single anchors with c ation of V _{Rk,c} see ETAG029, Annex C; s are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply Values	Characteristic resi Use categorEffective anchorage depth d/d $40^{\circ}C/24^{\circ}C$ $80^{\circ}C/50^{\circ}C$ $120^{\circ}C/72^{\circ}C$ $40^{\circ}C/24^{\circ}C$ h_{ef} $N_{Rk,b} = N_{Rk,p}^{1/}$ [kN][mm][kN]Compressive strength $f_b \ge 6$ N/mm² 80 $2,5$ (2,0) $2,5$ (1,5) $2,0$ (1,2) $2,5$ (1,5) 90 $4,0$ (2,5) $3,0$ (2,0) $2,5$ (1,5) $3,5$ (2,5) 100 $5,0$ (3,5) $4,0$ (3,0) $3,0$ (2,5) $4,5$ (3,0) 100 $6,5$ (4,5) $5,5$ (3,5) $4,0$ (3,0) $5,5$ (4,0)e valid for c _{cr} , values in brackets are valid for single anchors with c _{min} ation of V _{Rk,c} see ETAG029, Annex C; s are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply V _{Rk,b} bybisplacements	Effective anchorage depth d/d w/d $40^{\circ}C/24^{\circ}C$ $80^{\circ}C/50^{\circ}C$ $120^{\circ}C/72^{\circ}C$ $40^{\circ}C/24^{\circ}C$ $80^{\circ}C/50^{\circ}C$ h_{ef} $N_{Bk,b} = N_{Bk,p}^{-1}$ $N_{Bk,b} = N_{Bk,p} = N_{$	$\begin{tabular}{ c c c c c c } \hline Characteristic resistance & Use category & W/W & $	Characteristic resistance Use category W/W M/W M/W	$\begin{tabular}{ c c c c c } \hline Characteristic resistance & Use category & Use category & W/W &$

Brick type	Calcium silicate solid brick KS-NF	
Bulk density ρ [kg/dm ³]	2,0	
Compressive strength $f_b \ge [N/mm^2]$	10, 20 or 27	
Code	EN 771-2	
Producer (country code)	e.g. Wemding (DE)	
Brick dimensions [mm]	240 x 115 x 71	
Drilling method	Hammer	

Edge distance	Ccr	[mm]	1,5*h _{ef}	
Minimum edge distance	Cmin	[mm]	60	
Spacing	Scr	[mm]	3*her	
Minimum spacing	Smin	[mm]	120	

Table C12: Group factor for anchor group in case of tension loading

Configuration		with c ≥	with s ≥			
II: anchors placed		60	120			1,0
parallel to horizontal		140	120	α _{g,N,II}		1,5
joint	<u></u>	1,5*hef	3*het		1.1	2,0
⊥: anchors placed		60	120		[-]	0,5
perpendicular to	:	1,5*hef	120	α _{g,N,L}		1,0
horizontal joint	1	1,5*hef	3*her			2,0

Table C13: Group factor for anchor group in case of shear loading parallel to free edge

Configuration		with c ≥	with s ≥	1.1		
II: anchors placed	H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-	60	120			1,0
parallel to horizontal	V III	115	120	α _{g,V,II}		1,7
joint		1,5*hef	3*h _{ef}			2,0
⊥: anchors placed		60	120		[-]	1,0
perpendicular to	V 🚦	1,5*hef	120	$\alpha_{g,V,\perp}$		1,0
horizontal joint		1,5*hef	3*h _{ef}			2,0

Table C14: Group factor for anchor group in case of shear loading perpendicular to free edge

Configuration	with c ≥	with s ≥		1.5	
II: anchors placed	60	120			1,0
parallel to horizontal joint	1,5*hef	3*h _{ef}	α _{g,V,II}		2,0
L: anchors placed	60	120	1.	E.	1,0
perpendicular to horizontal joint	1,5*hef	3*h _{et}	$\alpha_{g,V,\perp}$		2,0

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry

Performances calcium solid brick KS-NF Installation parameters

Brick	type: Cal	cium silicat	e solid br	ick KS-NF								
Table (C15: Cł	naracteristic	values of r	esistance u	under tensio	on and she	ar loads					
					Cha	racteristic r						
				Use category								
Anchor Sleeve		Effective anchorage depth		d/d				d/d w/d w/w				
size	Sieeve	h _{ef} [mm]	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	For All temperature range			
	-	h _{ef}		$N_{Rk,b} = N_{Rk,p}$	1)		$N_{Rk,b} = N_{Rk,p}$	1)	$V_{Rk,b}^{2)3)}$			
		[mm]				[kN]		/	THE			
			Con	npressive s	strength f _b ≥	: 10 N/mm ²						
M8	-	80	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	2,5 (1,5)			
M10 / IG-M6	-	90	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,0 (2,0)			
M12 / IG-M8	-	100	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	2,5 (1,5)			
M16 / IG-M10	-	100	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,0 (1,5)	3,5 (1,5)	2,0 (0,9)	2,5 (1,5)			
M8	12x80	80	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,5 (1,5)	3,0 (1,5)	2,5 (1,2)	2,5 (1,5)			
M8 /	16x85	85	3,5 (1,5)	3,0 (1,5)	2,0 (0,9)	3,5 (1,5)	3,0 (1,5)	2,5 (1,2)	2,5 (1,5)			
M10/ IG-M6	16x130	130	3,5 (1,5)	3,0 (1,5)	2,0 (0,9)	3,5 (1,5)	3,0 (1,5)	2,5 (1,2)	2,5 (1,5)			
M12/	20x85	85	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	2,5 (1,5)			
M16 /	20x130	130	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	2,5 (1,5)			
IG-M8 / IG-M10	20x200	200	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	2,5 (1,5)			
		1			strength f _b ≥							
M8	-	80	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,0 (2,5)			
M10 / IG-M6	-	90	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,5 (2,5)			
M12/ IG- M8	•	100	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,0 (2,5)			
M16/ IG- M10	-	100	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,0 (2,5)			
M8	12x80	80	5,5 (2,5)	5,0 (2,5)	3,5 (1,5)	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	4,0 (2,5)			
M8 /	16x85	85	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,0 (2,5)			
M10/ IG- M6	16x130	130	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,0 (2,5)			
M12 /	20x85	85	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,5)			
M16 /	20x130	130	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,5)			
IG-M8 / IG-M10	20x200	200	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,5)			

1)

Values are valid for c_{cr} , values in brackets are valid for single anchors with c_{min} For c_{cr} calculation of $V_{Rk,c}$ see ETAG 029, Annex C; values in brackets $V_{Rk,b} = V_{Rk,c}$ for single anchors with c_{min} The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8 2)

3)

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry

Performances calcium solid brick KS-NF

Characteristic values of resistance under tension and shear load

	:16: Ch						•		
					Cha	racteristic re			
Anchor		Effective anchorage depth		d/d		Use categ	d/d w/d w/w		
size	Sleeve	h _{ef} [mm]	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	For All temperature range
		h _{ef}		$N_{Rk,b} = N_{Rk,k}$	1)	$N_{Rk,b} = N_{Rk,p}^{1}$			$V_{Rk,b}^{(2)3)}$
		[mm]		[kN]					
			Com	pressive s	trength f _b ≥	27 N/mm ²			
M8	-	80	7,0 (3,5)	6,5 (3,0)	5,0 (2,5)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	4,5 (2,5)
M10 / IG-M6	-	90	7,0 (3,5)	6,5 (3,0)	5,0 (2,5)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,5 (3,0)
M12 / IG-M8	-	100	7,0 (3,5)	6,5 (3,0)	5,0 (2,5)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	4,5 (2,5)
M16 / IG-M10	-	100	6,0 (3,0)	5,5 (2,5)	4,5 (2,0)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	4,5 (2,5)
M8	12x80	80	6,5 (3,0)	6,0 (3,0)	4,5 (2,0)	5,5 (2,5)	5,0 (2,5)	3,5 (1,5)	4,5 (2,5)
M8 /	16x85	85	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	4,5 (2,5)
M10/ IG- M6	16x130	130	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	4,5 (2,5)
M12 /	20x85	85	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,5 (2,5)
M16 /	20x130	130	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,5 (2,5)
IG-M8 / IG-M10	20x200	200 d for c _{or} , values	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,5 (2,5)

Values are valid for c_{cr} , values in brackets are valid for single anchors with c_{min} For c_{cr} calculation of $V_{Rk,c}$ see ETAG 029, Annex C; values in brackets $V_{Rk,b} = V_{Rk,c}$ for single anchors with c_{min} The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8 2)

3)

Table C17: Displacements

Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δγ∞
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	-	80				1,7	0,90	1,35	
M10 / IG-M6	-	90	2,0		0,30	0,60	2,0	1,10	1,65
M12 / IG-M8	-	100							
M16 / IG-M10	-	100	1,7 0,15	0,26	0,51				
M8	12x80	80		0,10	-,	,	1,7		1,35
M8 / M10/	16x85	85	1.4		0.01	0.40		0,90	
IG-M6	16x130	130	1,4		0,21	0,43			
M12/M16/	20x85	85					1		
IG-M8 /	20x130	130	1,3		0,19	0,39			
IG-M10	20x200	200							

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry	
Performances calcium solid brick KS-NF	Annex C

Characteristic values of resistance under tension and shear load (continue) Displacements

C 8

Brick type		Calcium silicate hollow	w brick			
Bulk density	ρ [kg/dm ³]	1,4		14	P	
	$p [N/mm^2]$	8, 12 or 14	1	100	10°0	1
Code	P = [iwittin]	EN 771-2			2.0	(
Producer (country code)		e.g. Wemding (DE)			~	
Brick dimensions	[mm]	240 x 175 x 113				
Drilling method	[iiiii]	Rotary				
	175			14 44 14 32 14		
		5, 44 , 14, 38 , 17, 3	1 1	44 14		
	n parameters	5	18 14, 44 16	14		
Anchor size	n parameters	s	18 14 44 16	14 All size	and the second se	
Anchor size Edge distance	n parameters	s [r	[-] mm]	14	and the second se	
Anchor size Edge distance Minimum edge distance	n parameters	s [r	18 14 44 16	All size 100 (12	and the second se	
Table C19: Installation Anchor size	n parameters	s [r [r [r	[-] mm]	All size 100 (12 60	and the second se	
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing	n parameters	5 [r [r [r [r [r [r [r	[-] mm] mm]	All size 100 (12 60 240	and the second se	
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH	n parameters	s [r [r [r [r [r 130 and SH20x200 or group in case of tens	[-] mm] mm] mm] mm] mm] mm]	All size 100 (12 60 240 120	and the second se	
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH	n parameters	s [r [r [r [r [r] [r]]]]]]]]]]	[-] mm] mm] mm] mm] mm] mm]	14 All size 100 (12 60 240 120 120	and the second se	
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH Table C20: Group fac	n parameters	s [r [r [r [r [r 130 and SH20x200 or group in case of tens	[-] [-] [mm] [mm] [mm] [mm] [mm] [mm] [m	All size 100 (12 60 240 120 120 120	and the second se	1,5
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH Table C20: Group fac Configuration II: anchors placed parallel to horizontal	n parameters	s [r [r [r [r [r [r [r [r [r] 130 and SH20x200 or group in case of ten: with c ≥	[-] mm] mm] mm] sion loading with s	14 All size 100 (12 60 240 120 120	and the second se	1,5
Anchor size Edge distance Minimum edge distance Spacing ¹⁾ Value in brackets for SH Table C20: Group fac Configuration	n parameters	s [r [r [r [r 130 and SH20x200 or group in case of tens with c ≥ 60	[-] mm] mm] mm] sion loading with s 120	All size 100 (12 60 240 120 120 120 120	and the second se	1
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing 1) Value in brackets for SH Table C20: Group fac Configuration II: anchors placed parallel to horizontal joint ⊥: anchors placed	n parameters	s [r [r [r [r [r 130 and SH20x200 or group in case of ten: with c ≥ 60 c _{cr}	[-] mm] mm] mm] sion loading with s 120 240	All size 100 (12 60 240 120 120 ≥ α _{g,N,II}	D) ¹⁾	2,0
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH Table C20: Group fac Configuration II: anchors placed parallel to horizontal joint	n parameters	s [r [r [r [r [r 130 and SH20x200 or group in case of tens with c ≥ 60 c _{cr} 160	[-] mm] mm] mm] sion loading with s 120 240 120	14 All size 100 (12 60 240 120 120 120 120 120 120 120 120 120 120 2 α _{g,N,ll} α _{g,N,ll}	D) ¹⁾	2,0 2,0

	Configur	ation		with c ≥		with s	2			
II: ancho	rs placed	1	T	60		120				1,0
	horizontal	V ••		160		120	α	g,V,IL	Ī	1,6
jo	int		1	Ccr		240		[i I	2,0
⊥: ancho	rs placed	The state	1	60		120		1	1	1,0
perpend horizon	licular to tal joint	V		Ccr		120	α	g,V,⊥		2,0
Table C2	2: Grou	p factor for a	inchor grou	up in case o	of shear loa	ading perpe	endicular t	o free edg	e	
7	Configur	ation		with c ≥		with s	2		-	
II: ancho				60		120				1,0
	horizontal int	V		Ccr		240	α	g,V,II		2,0
	rs placed		T	60		120		1	-1	1,0
perpend	licular to	V				120	α	g,V,⊥	-	2,0
horizon	tal joint	10,20	1.	Ccr		120				2,0
Table C2	3: Char	acteristic va	lues of res	istance und			1000			_
					Char	acteristic re				
		Effective	1			Use catego	ory			d/d; w/d;
1.11.12		anchorage	d/d w/d; w/w				w/w			
Anchor size	Sleeve	depth	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°	C tei	For all mperature range
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$	1)		$N_{Rk,b} = N_{Rk,j}$	1)		V _{Rk,b} ⁴⁾
	-	[mm]		- Thinks - Thinks		[kN]				11110
100			Comp	pressive str	rength $f_b \ge 8$	3 N/mm ²				
M8	12x80	80	1,5	1,5	1,2	1,5	1,2	0,9	2,	$(5^{2})(0,9)^{3}$
M8 / M10	16x85	85	1,5	1,5	1,2	1,5	1,5	1,2	4,	$0^{2}(1,5)^{3}$
/ IG-M6	16x130	130	1,5	1,5	1,2	1,5	1,5	1,2		$0^{2}(1,5)^{3}$
M12 / M16 /	20x85	85	4,5	4,0	3,0	4,5	4,0	3,0		$(1,5)^3$
IG-M8 /	20x130	130	4,5	4,0	3,0	4,5	4,0	3,0		0^{2} (1,5) ³
IG-M10	20x200	200	4,5	4,0	3,0	4,5	4,0	3,0	4,	0^{2} (1,5) ³
	-		Comp	ressive str	ength $f_b \ge 1$	2 N/mm ²				
M8	12x80	80	2,0	2,0	1,5	2,0	1,5	1,2		$(1,2)^3$
M8 / M10	16x85	85	2,0	2,0	1,5	2,0	2,0	1,5	4,	$(5^{2})(1,5)^{3}$
/ IG-M6	16x130	130	2,5	2,5	1,5	2,5	2,5	1,5		$(5^{2})(1,5)^{3}$
M12 /	20x85	85	6,0	5,5	4,0	6,0	5,5	4,0		$(5^{2})(1,5)^{3}$
M16 / IG-M8 /	20x130	130	6,0	5,5	4,0	6,0	5,5	4,0	4,	$(5^{2})(1,5)^{3}$
IG-M10	20x200	200	6,0	5,5	4,0	6,0	5,5	4,0		$(5^{2})(1,5)^{3}$
1) Values 2) V _{Rk,c,II}	= V _{Rk,b} valic = V _{Rk,b} (valu	or c _{cr} and c _{min} I for shear load Jes in brackets Ilid for steel 5.6) valid for she	ear load in di			,8			
VRk,C,1	alues ale va		an granterri							

					Char	acteristic re	sistance		
					Ona	Use catego			
Arreleev		Effective anchorage		d/d			w/d w/w		d/d; w/d; w/w
Anchor size	Sleeve	depth	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	For all temperature range
		h _{ef}		$N_{Rk,b} = N_{Rk}$	1) ,p		$N_{Rk,b} = N_{Rk,p}$	1)	V _{Rk,b} ⁴⁾
		[mm]				[kN]			
		1			rength f _b ≥ 1				
M8	12x80	80	2,5	2,5	1,5	2,0	2,0	1,5	$3,5^{2}(1,5)^{3}$
M8 / M10	16x85	85	2,5	2,5	1,5	2,5	2,5	1,5	$6,0^{2}$ (2,0) ³⁾
/ IG-M6	16x130	130	2,5	2,5	2,0	2,5	2,5	2,0	$6,0^{2}(2,0)^{3}$
M12 /	20x85	85	6,5	6,0	4,5	6,5	6,0	4,5	$6,0^{2}$ (2,0) ³⁾
M16 / IG-M8 /	20x130	130	6,5	6,0	4,5	6,5	6,0	4,5	6,0 ²⁾ (2,0) ³⁾
IG-M10	20x200	200	6,5	6,0	4,5	6,5	6,0	4,5	$6,0^{2}$ (2,0) ³⁾
$V_{\rm Rk,c,II}$ $V_{\rm Rk,c,II}$ $V_{\rm Rk,c,\perp}$	= V _{Rk,b} valic = V _{Rk,b} (vali alues are va) valid for sh 5 or greater. fective	ear load in c For steel 4.6	and 4.8 multi	oly V _{Rk,b} by 0,			
Anchor siz	ze Sle		horage pth h _{ef}		/ Ν δ _Ν) δ _{N∞}	V	δ _{νο}	δ _{V∞}
			[mm]	[kN] [mm	/kN] [mn	1] [mm	i] [kN]	[mm]	[mm]
M8	12	x80	80				1,0	1,0	1,50
M8 / M10) / 16	x85	85	0,71	0,6	4 1,29)		
IG-M6	16>	(130	130		90				
M12 / M16	6 / 20	x85	85	0,	50		1,7	1,9	2,85
IG-M8 /	20>	(130	130	1,86	1,6	7 3,34	4		

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry

Performances calcium hollow brick KS L-3DF Characteristic values of resistance under tension and shear load (continue) Displacements

200

Annex C 11

IG-M10

20x200

Brick type	Calcium silicate hollow brick				
Bulk density ρ [kg/dm	KSL-12DF 1 ³] 1,4				
Compressive strength $f_b \ge [N/mm]$					
Code	EN 771-2				5
Producer (country code)	e.g. Wemding (DE)			-1	1
Brick dimensions [mr				P	
Drilling method	Rotary				
	040	$) \cup ($	\bigcirc	17	
35, 59, 64	7 ⁵⁹ 7 ⁶⁴ 7 ⁵⁹	1 64 1	59 _/ 35		
Table C27: Installation parame	1 1 1	1 64 1	All sizes	1	
Table C27: Installation parame Anchor size Ccr Edge distance Ccr	ters	/ 64 /	All sizes 100 (120) ¹	۹)	
Table C27: Installation parame Anchor size Ccr Edge distance Ccr Minimum edge distance Cmin ²	ters [-] [mm] [mm]	/ 64 /	All sizes 100 (120) ¹ 100 (120) ¹	۹)	
Table C27: Installation parame Anchor size Edge distance Ccrr Edge distance Ccrr Cmin ² Minimum edge distance Spacing Scr.(II	ters [-] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	/ 64 /	All sizes 100 (120) ¹ 100 (120) ¹ 498	۹)	
Table C27: Installation parame Anchor size Ccr Edge distance Ccr Minimum edge distance Cmin ²	ters [-] [mm] [mm]	/ 64 /	All sizes 100 (120) ¹ 100 (120) ¹	۹)	
Table C27: Installation parame Anchor size Edge distance Ccr Edge distance cmin ² Minimum edge distance cmin ² Spacing Scr.II Minimum spacing Smin ¹⁾ Value in brackets for SH20x85 and C ² For V _{Rk,c} : cmin according to ETAG C Table C28: Group factor for an	ters [-] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	ading	All sizes 100 (120) ¹ 100 (120) ¹ 498 238	۹)	
Table C27: Installation parame Anchor size Edge distance Ccr Edge distance cmin ² Minimum edge distance Scr.II Spacing Scr.II Minimum spacing Smin ¹⁾ Value in brackets for SH20x85 and C ²⁾ For V _{Rk,c} : cmin according to ETAG (C Table C28: Group factor for an Configuration	eters [-] [mm] [mm] [mm] [mm] [mm] [mm] [sH20x130 029, Annex C [chor group in case of tension log with c ≥	ading with s ≥	All sizes 100 (120) ¹ 100 (120) ¹ 498 238	۹)	
Table C27: Installation parame Anchor size Edge distance Ccr Edge distance cmin ² Minimum edge distance cr,11 Spacing Scr,11 Minimum spacing Smin ¹⁾ Value in brackets for SH20x85 and C ²⁾ For V _{Rk,c} : cmin according to ETAG C Table C28: Group factor for an	ters [-] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	ading	All sizes 100 (120) ¹ 100 (120) ¹ 498 238)	
Table C27: Installation parame Anchor size Edge distance Ccr Edge distance cmin ² Minimum edge distance cr.11 Spacing Scr.11 Minimum spacing Smin ¹⁾ Value in brackets for SH20x85 and C ²⁾ For V _{Rk,c} : cmin according to ETAG C Table C28: Group factor for an Configuration II: anchors placed parallel to horizontal joint Image: Configuration 1: anchors placed Image: Configuration	eters	ading with s ≥ 120	All sizes 100 (120) ¹ 100 (120) ¹ 498 238 120	۹)	1,0
Table C27: Installation parame Anchor size Edge distance Corr Edge distance Corr Cmin ² Spacing Scr.II Scr.II Minimum edge distance Scr.II Scr.II Minimum spacing Smin Smin ¹⁾ Value in brackets for SH20x85 and Correct SH20x85 and Correct SH20x85 and Configuration Scr.II ²⁾ For V _{Rk,c} : Cmin according to ETAG Configuration Table C28: Group factor for an Configuration II: anchors placed parallel to horizontal joint III: anchors placed III: anchors placed	ters [-] [mm] [mm] [mm] [mm] [mm] [mm] [c] GSH20x130 029, Annex C chor group in case of tension loc with c ≥ 100 c _{cr}	ading with s ≥ 120 498	All sizes 100 (120) ¹ 100 (120) ¹ 498 238 120)	2,0

Installation parameters

	Configuration	P I		with c ≥		with s ≥			- 1 1
II: anchors p parallel to hor joint	laced			Ccr		498	α	'g,V,II	2,0
⊥: anchors p perpendicul horizontal j	ar to	V		Ccr		238	α	[-]	2,0
Table C30:	Group fac	ctor for anch	or group	in case of	shear load	ing perpe	ndicular t	o free edge	
(Configuration	0	1	with c ≥		with s ≥			
II: anchors p parallel to hor joint	laced	V		Ccr		498	α	(g,V,II	2,0
⊥: anchors p perpendicul horizontal j	ar to	V		Ccr		238	α	[-]	2,0
Table C31:	Characte	eristic values	of resist	ance unde	1.	nd shear I	5 W 1591		
					Char				
		Effective anchorage		d/d		Use categ	w/d w/w		d/d w/d w/w
Anchor size	Sleeve	depth	40°C/24°(C 80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	For all temperature range
		h _{ef}		$N_{Rk,b} = N_{Rk,c}$	1)	N	I _{Rk,b} = N _{Rk,}	1) p	V _{Rk,b} ²⁾³⁾
		[mm]				[kN]			
			Compre	ssive stren	gth $f_b \ge 10$	N/mm ²			
M8	12x80	80	0,6	0,6	0,4	0,5	0,5	0,4	2,5
M8/M10/	16x85	85	0,6	0,6	0,4	0,6	0,6	0,4	5,5
IG-M6	16x130	130	2,5	2,5	2,0	2,5	2,5	2,0	5,5
M12 / M16 / IG-M8 /	20x85	85	1,5	1,5	0,9	1,5	1,5	0,9	5,5
IG-M10	20x130	130	2,5	2,5	2,0	2,5	2,5	2,0	5,5
			Compre	ssive stren	gth $f_b \ge 12$	N/mm ²			
M8	12x80	80	0,75	0,6	0,5	0,6	0,6	0,4	3,0
M8/M10/	16x85	85	0,75	0,6	0,5	0,75	0,6	0,5	6,5
IG-M6	16x130	130	3,0	3,0	2,0	3,0	3,0	2,0	6,5
M12/M16/	20x85	85	1,5	1,5	1,2	1,5	1,5	1,2	6,5
IG-M8 / IG-M10	20x130	130	3,0	3,0	2,0	3,0	3,0	2,0	6,5
2) Calculatio		and c _{min} e ETAG 029, A or steel 5.6 or g						120 mm: V _{Rk}	$\mathbf{v}_{\mathrm{R}\mathbf{k},\mathrm{b}}$
Mundo Ini	ection Syst	tem MIT-SE F	Plus or M	IT-COOL P	lus for ma	sonry	11		

Brick type:	Calcium s	ilicate holl	ow brick	KS L-120)F				
Table C32:	Characte	ristic values	of resista	ance unde	r tension a	nd shear l	oads (cor	ntinue)	
					Char	acteristic r	esistance		
						Use categ	gory		
Anchereize	Sleeve	Effective anchorage depth	d/d				w/d w/w		d/d w/d w/w
Anchor size	Sleeve	depth	40°C/24°C	80°C/50°C	120°C/72°C	C 40°C/24°C 80°C/50°C 120°0		120°C/72°C	For all temperature range
		h _{ef}	1	$N_{Rk,b} = N_{Rk,j}$	1) p	1	$V_{Rk,b} = N_{Rk,b}$	1) p	V _{Rk,b} ²⁾³⁾
		[mm]				[kN]		P	
		· · ·	Compres	sive stren	gth f _b ≥ 16	N/mm ²			
M8	12x80	80	0,9	0,9	0,6	0,75	0,75	0,5	3,5
M8 / M10 /	16x85	85	0,9	0,9	0,6	0,9	0,9	0,6	8,0
IG-M6	16x130	130	4,0	3,5	2,5	4,0	3,5	2,5	8,0
M12 / M16 /	20x85	85	2,0	2,0	1,5	2,0	2,0	1,5	8,0
IG-M8 / IG-M10	20x130	130	4,0	3,5	2,5	4,0	3,5	2,5	8,0

¹⁾ Values are valid for c_{cr} and c_{min}

²⁾ Calculation of V_{Rk,c} see ETAG 029, Annex C, except for shear load parallel to free edge with $c \ge 120 \text{ mm}$: V_{Rk,c,II} = V_{Rk,b} ³⁾ The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply V_{Rk,b} by 0,8

Table C33:Displacements

Anchor size	Sleeve	Effective anchorage depth h _{ef}	Ν	δ _N / N	δ _{N0}	δ _{N∞}	V	δ_{V0}	δγ∞
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,26		0,23	0.46	1,0	1,3	1,95
M8 / M10 /	16x85	85	0,20		0,23	0,46			
IG-M6	16x130	130	1,14	0.90	1,03	2,06			
M12 / M16	20x85	85	0,57		0,51	1,03	2,3	2,5	3,75
/ IG-M8 / IG-M10	20x130	130	1,14		1,03	2,06			

	•					
Mungo Injection	ו Svstem	MIT-SE	Plus or	' MIT-COOL	Plus fo	r masonrv

Performances calcium hollow brick KS L-12DF Characteristic values of resistance under tension and shear load (continue) Displacements

Brick type		Clay solid brick Mz-DF			-		
Bulk density	ρ [kg/dm ³]	1,6			100		
Compressive strength	$f_b \ge [N/mm^2]$	10, 20 or 28			and the second se		
Code		EN 771-1			1		
Producer (country code)		e.g. Unipor (DE)					
Brick dimensions	[mm]	240 x 115 x 55		-	1.1		
Drilling method		Hammer					
A 49 14	Cmin		[mm]		60		
S 40 10 10 10 10 10 10 10 10 10 10 10 10 10	Castle		[mm]				
ě.							
Spacing	S _{cr}		[mm] [mm]		3*h _{ef} 120		
Spacing Minimum spacing	S _{Cr} S _{min}	or group in case of	[mm]	ading			
Spacing Minimum spacing	S _{Cr} S _{min}	or group in case of with c ≥	[mm]	ading with s ≥			
Spacing Minimum spacing Table C36: Group fac Configuration II: anchors placed	S _{Cr} S _{min}		[mm]				0,7
Spacing Minimum spacing Table C36: Group fac Configuration	S _{Cr} S _{min}	with c ≥	[mm]	with s ≥			
Configuration II: anchors placed parallel to horizontal joint L: anchors placed	S _{Cr} S _{min}	with c ≥ 60	[mm]	with s ≥ 120	120	[-]	0,7 2,0 0,5
Spacing Minimum spacing Table C36: Group fac Configuration II: anchors placed parallel to horizontal joint	S _{Cr} S _{min}	with c ≥ 60 1,5*hef	[mm]	with s ≥ 120 3*h _{ef}	120	[-]	2,0

Table C37: Group factor for anchor group in case of shear loading parallel to free edge

Configurati	on	with c ≥	with s ≥			
II: anchors placed		60	120		1.1.1.1	0,5
parallel to horizontal	V	90	120	α _{g,V,II}		1,1
joint		1,5*hef	3*her	11 6.3	71	2,0
⊥: anchors placed	È	60	120		1-1	0,5
perpendicular to	V 3	1,5*hef	120	α _{g,V,L}		1,0
horizontal joint		1,5*hef	3*hef	and the second second		2,0

Table C38: Group factor for anchor group in case of shear loading perpendicular to free edge

Configurat	ion	with c ≥	with s ≥		10.000	
II: anchors placed		60	120			0,5
parallel to horizontal	V	1,5*hef	120	α _g ,v,ii		1,0
joint		1,5*hef	3*her	+- 1 1km	1.1	2,0
⊥: anchors placed		60	120		[-]	0,5
perpendicular to	V	1,5*hef	120	$\alpha_{g,V,\perp}$		1,0
horizontal joint	Fiel	1,5*hef	3*het			2,0

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry

Performances clay solid brick Mz-DF

Description of the brick

Installation parameters

				Characte	ristic resistance	
				Use	e category	
		Effective		d/d		
		anchorage		w/d		w/d
Anchor size	Sleeve	depth		w/w		w/w
		·	40°C/24°C	80°C/50°C	120°C/72°C	For all temperature range
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$)	V _{Rk,b} ²⁾³⁾
		[mm]			[kN]	
		Compressive s	trength f _b ≥ 10	N/mm ²		
M8	-	80	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,5 (1,2)
M10 / IG-M6	-	90	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
M12 / IG-M8	-	100	4,0 (2,0)	4,0 (2,0)	3,5 (1,5)	3,5 (1,2)
M16 / IG-M10	-	100	4,0 (2,0)	4,0 (2,0)	3,5 (1,5)	5,5 (1,5)
M8	12x80	80	3,5 (1,5)	3,5 (1,5)	3,0 (1,2)	3,5 (1,2)
M8 / M10 /	16x85	85	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
IG-M6	16x130	130	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
M12 / M16 /	20x85	85	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
IG-M8 /	20x130	130	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
IG-M10	20x200	200	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
I		Compressive s				
M8	-	80	4,5 (2,5)	4,5 (2,5)	4,0 (2,0)	5,0 (1,5)
M10 / IG-M6	-	90	5,5 (2,5)	5,5 (2,5)	4,5 (2,0)	5,0 (1,5)
M12 / IG-M8	-	100	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,0 (1,5)
M16 / IG-M10	-	100	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	8,0 (2,5)
M8	12x80	80	4,5 (2,5)	4,5 (2,5)	4,0 (2,0)	5,0 (1,5)
M8 / M10 /	16x85	85	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)
IG-M6	16x130	130	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)
M12/M16/	20x85	85	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)
IG-M8 /	20x130	130	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)
IG-M10	20x200	200	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)
I		Compressive s			.,. (_,.,	0,0 (1,0)
M8	-	80	5,5 (2,5)	5,5 (2,5)	4,5 (2,5)	5,5 (2,0)
M10 / IG-M6	-	90	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)
M12 / IG-M8	-	100	7,0 (3,5)	7,0 (3,5)	6,0 (3,0)	5,5 (2,0)
M16 / IG-M10	-	100	7,0 (3,5)	7,0 (3,5)	6,0 (3,0)	9,0 (3,0)
M8	12x80	80	5,5 (2,5)	5,5 (2,5)	4,5 (2,5)	5,5 (2,0)
M8 / M10 /	16x85	85	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)
IG-M6	16x130	130	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)
M12 / M16 /	20x85	85	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)
IG-M8 /	20x130	130	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)
IG-M10	20x200	200	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)

For c_{cr} calculation of $V_{Rk,c}$ see ETAG 029, Annex C; for c_{min} values in brackets $V_{Rk,b} = V_{Rk,c}$ The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b} = V_{Rk,c}$

³⁾ The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry

Performances clay solid brick Mz-DF

Characteristic values of resistance under tension and shear load

Brick type: Clay solid brick Mz-DF										
Table C40: Di	splaceme	nts								
Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ _{N0}	δ _{N∞}	V	δ_{V0}	δγ∞	
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]	
M8	-	80	1,3		0,19	0,39		_		
M10 / IG-M6	-	90	1,6		0,24	0,47	1,9			
M12 / IG-M8	-	100	17		0.06	0.51	2,9			
M16 / IG-M10	-	100	1,7		0,26	0,51				
M8	12x80	80		0.15				1.00	1 50	
M8 / M10 /	16x85	85		0,15				1,00	1,50	
IG-M6	16x130	130	1.0		0.10	0.00	10			
M12 / M16 / IG-M8 /	20x85	85	- 1,3		0,19	0,39	1,9			
	20x130	130								
IG-M10	20x200	200	1							

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry

Performances clay solid brick Mz-DF Displacements

Bulk density Compressive strength f _b Code	$\rho [kg/dm^3]$	HLz-16-DF					
Compressive strength fb		0,8			100	Contra Co	
	Compressive strength $f_b \ge [N/mm^2]$						
		6, 8, 12, 14 EN 771-1				1	
Producer (country code)		e.g. Unipor DE)					
Brick dimensions	[mm]	497 x 240 x 238					-
Drilling method		Rotary		0.0			
	8 [H		100 7		10		
				6-# 000000000000000000000000000000000000	++13 #-		
Table C42: Installation				6-#	# E1++		
Table C42: Installation Anchor size		S			All sizes)	
Table C42: Installation Anchor size Edge distance	parameters	s	[·] [mm]	6-#	# E1++		
Table C42: Installation Anchor size Edge distance Winimum edge distance Minimum edge distance	parameters	S	[mm]		All sizes 100 (120) ¹		
Table C42: Installation Anchor size Edge distance Minimum edge distance Spacing	parameters	S	[mm] [mm]	6-#	All sizes 100 (120) ¹ 100 (120) ¹		
Table C42: Installation Anchor size	cor Cor Cor Cor Cor Cor Cor Cor C	s <pre> x130 and SH20x200 Annex C pr group in case of ter </pre>	[mm] [mm] [mm] [mm]	ling	All sizes 100 (120) ¹ 100 (120) ¹ 497 238		
Table C42: Installation Anchor size Edge distance Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : cmin according Table C43: Group factor Configuration Installation	cor Cor Cor Cor Cor Cor Cor Cor C	s (130 and SH20x200 Annex C or group in case of ter with c ≥	[mm] [mm] [mm] [mm]	ling with s ≥	All sizes 100 (120) ¹ 100 (120) ¹ 497 238		
Table C42: Installation Anchor size	cor Cor Cor Cor Cor Sor,II Sor,II Sor,I So	s <pre> x130 and SH20x200 Annex C pr group in case of ter </pre>	[mm] [mm] [mm] [mm]	ling with s ≥ 100	All sizes 100 (120) ¹ 100 (120) ¹ 497 238		1,3
Table C42: Installation Anchor size Edge distance Edge distance Minimum edge distance Spacing Minimum spacing ¹¹ Value in brackets for SH ²² For V _{Rk,c} : cmin according Table C43: Group factor II: anchors placed parallel to horizontal joint Initian factor	cor Cor Cmin Scr.II Scr.II Sor	s (130 and SH20x200 Annex C or group in case of ter with c ≥	[mm] [mm] [mm] [mm]	ling with s ≥	All sizes 100 (120) ¹ 100 (120) ¹ 497 238 100		1,3
Table C42: Installation Anchor size Edge distance Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : cmin according Table C43: Group factor II: anchors placed parallel to horizontal Initial In	cor Cor Cmin Scr.II Scr.II Sor	s (130 and SH20x200 Annex C or group in case of ter with c ≥ C _{cr}	[mm] [mm] [mm] [mm]	ling with s ≥ 100	All sizes 100 (120) ¹ 100 (120) ¹ 497 238 100		

Config	guration	with c	2	with s ≥				
II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint		Ccr		497	α _{g,V,II}	r.i	2,0	
		Ccr	C _{cr}		α _{g,V,⊥}	[-]	2,0	
Table C45: Gro	oup factor for and	chor group in case	e of shear load	ding perpend	cular to free e	dge		
Config	guration	with c	2	with s ≥				
II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint		Ccr		497	α _{g,v,l}	[-]	2,0	
		C _{cr}	7	238	$\alpha_{g,v,\perp}$		2,0	
Table C46: Ch	aracteristic value	es of resistance u	nder tension a	20 A 21 - 1962 - 1 - 1 - 2 - 1	55			
					ristic resistance	ce		
					e category	r		
		Effective anchorage		d/d w/d		10	d/d w/d	
Anchor size	Sleeve	depth		w/w		w/w		
	0.0010		40°C/24°C	80°C/50°C	120°C/72°C	tem	For all perature	
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$)	range V _{Rk,b} ²⁾³⁾		
		[mm]		[kN]			HK,D	
		Compressive s	strength $f_{\rm h} \ge 6$				_	
M8	12x80	80	2,5	2,5	2,0		2,5	
M8 / M10/ IG-	16x85	85	2,5	2,5	2,0	1	4,5	
M6	16x130	130	3,5	3,5	3,0		4,5	
	20x85	85	2,5	2,5	2,0		5,0	
M12 / M16 / IG-	20x130	130	3,5	3,5	3,0	1	6,0	
M8 / IG-M10	20x200	200	3,5	3,5	3,0		6,0	
		Compressive s						
M8	12x80	80	3,0	3,0	2,5		3,0	
M8 / M10/ IG-	16x85	85	3,0	3,0	2,5		5,5	
M6	16x130	130	4,5	4,5	3,5		5,5	
	20x85	85	3,0	3,0	2,5		6,0	
M12 / M16 / IG- M8 / IG-M10	20x130	130	4,5	4,5	3,5		7,0	
	20x200	200	4,5	4,5	3,5	-	7,0	
²⁾ Calculation		29, Annex C, except 6 or greater. For stee				nm: V _{Rk}	c,ii = V _{Rk,b}	

Brick type: Cla	ay hollow brick Hl	_z-16-DF							
Table C47: C	characteristic values	s of resistance u	nder tension a	and shear loa	ds (continue)				
			Characteristic resistance						
		Effective anchorage depth		d/d					
	Sleeve			w/d					
Anchor size				w/w					
Anchor Size		o optit		80°C/50°C		For all			
			40°C/24°C		120°C/72°C	temperature			
						range			
		h _{ef}	$N_{Rk,b} = N_{Rk,p}^{1)}$			V _{Rk,b} ²⁾³⁾			
		[mm]							
Compressive strength f _b ≥ 12 N/mm ²									
M8	12x80	80	3,5	3,5	3,0	4,0			
M8 / M10/ IG- M6	16x85	85	3,5	3,5	3,0	6,5			
	16x130	130	5,0	5,0	4,5	6,5			
M12 / M16 / IG- M8 / IG-M10	20x85	85	3,5	3,5	3,0	7,0			
	20x130	130	5,0	5,0	4,5	9,0			
	20x200	200	5,0	5,0	4,5	9,0			
		Compressive s	trength f _b ≥ 14	N/mm ²					
M8	12x80	80	4,0	4,0	3,0	4,0			
M8 / M10/ IG- M6	16x85	85	4,0	4,0	3,0	6,5			
	16x130	130	5,5	5,5	4,5	6,5			
	20x85	85	4,0	4,0	3,0	7,0			
M12 / M16 / IG- M8 / IG-M10	20x130	130	5,5	5,5	4,5	9,0			
	20x200	200	5,5	5,5	4,5	9,0			

¹⁾ Values are valid for c_{cr} and c_{min}

²⁾ Calculation of V_{Rk,c} see ETAG 029, Annex C, except for shear load parallel to free edge with $c \ge 125$ mm: V_{Rk,c,II} = V_{Rk,b}

³⁾ The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0.8

Table C48: Displacements

Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ _{N0}	δ _{N∞}	V	δ_{V0}	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	1,14		0,11	0,23	1,10	1,20	1,80
M8 / M10/ IG- M6	16x85	85					1.96	1,50	0.05
	16x130	130	1,57	0.10	0,16	0,31	1,86	1,50	2,25
M12 / M16 / IG-M8 / IG- M10	20x85	85	1,14	0,10	0,11	0,23	1,86	1,50	2,25
	20x130	130	1 57		0,16	0,31	2,57	2,10	0.15
	20x200	200	1,57						3,15

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry

Performances clay hollow brick HLz-16DF

Characteristic values of resistance under tension and shear load (continue) Displacements

Porotherm Homebric im³] 0,7 im²] 4, 6 or 10 EN 771-1 e.g. Wienerberger (FF nm] 500 x 200 x 299 Rotary 49 - 4,5 49 - 4,5 49	R)					
1m²] 4, 6 or 10 EN 771-1 e.g. Wienerberger (FF nm] 500 x 200 x 299 Rotary 49 4,5 49						
EN 771-1 e.g. Wienerberger (FF nm] 500 x 200 x 299 Rotary 49 						
e.g. Wienerberger (FF nm] 500 x 200 x 299 Rotary 49 49 31 25 31 25						
nm] 500 x 200 x 299 Rotary 49 4,5 31 25						
Rotary 49			10,5			
49						
neters						
	into I					
	mm]					
n [r		10				
	mm]					
n [r ind SH20x130 G 029, Annex C anchor group in case of tens	mm] sion loading	S≥		2,0		
n [r ind SH20x130 G 029, Annex C anchor group in case of tens with c ≥ 200	mm] sion loading with s	s≥ 00 ((a N	(,))			
n [r and SH20x130 G 029, Annex C anchor group in case of tens with c ≥	mm] sion loading with s 100	s≥ 00 00 α _{g,N,}	ı,ıı [-]	2,0 2,0 1,2		
2 n) []	[-] [mm]	[-] All s [mm] 100 (* [mm] 100 (* [mm] 50 [mm] 29	[-] All sizes [mm] 100 (120) ¹⁾ [mm] 100 (120) ¹⁾ [mm] 500 [mm] 299		

Configurati	on	with	1 C ≥	with s	2	-	
II: anchors placed parallel to horizontal joint	V	c	cr	500	α _{g,V}		2,0
⊥: anchors placed perpendicular to horizontal joint	V	c	icr	299	α _{g,v}	ц. [-]	2,0
able C53: Group	factor for and	chor group in ca	ase of shear l	oading perp	endicular to i	iree edge	
Configurati	on	with	IC≥	with s	2		
II: anchors placed parallel to horizontal joint	allel to horizontal		Ccr		α _{g,V}	" [-]	2,0
⊥: anchors placed perpendicular to horizontal joint		c	C _{cr}		299 α _g ,		2,0
able C54: Charac	teristic value	es of resistance	under tensio	on and shear	loads		
	1			Chara	cteristic resist	ance	
					Use category	unoo	
		Effective		d/d	Ose category	d/c	4
		anchorage		w/d		w/c	
Anchor size	Sleeve	depth		w/w		w/w	
		Sleeve depth	40°C/24°C	80°C/50°C	120°C/72°C	For all tem rand	perature
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$)	V _{Rk,b}	2)3)
		[mm]		2	[kN]		
	1		e strength f _b				
M8	12x80	80	0,9	0,9	0,75	2,0	
M8 / M10/ IG-M6	16x85	85	0,9	0,9	0,75	2,0	
Contra de actor de Carrier	16x130	130	1,2	1,2	0,9	2,0	
M12 / M16 /	20x85	85	0,9	0,9	0,75	2,5	
IG-M8 / IG-M10	20x130	130	1,2	1,2	0,9	2,5	5
	1		e strength f _b				_
M8	12x80	80	0,9	0,9	0,9	2,8	
M8 / M10/ IG-M6	16x85	85	0,9	0,9	0,9	2,5	
	16x130	130	1,2	1,2	1,2	2,5	
M12 / M16 /	20x85	85	0,9	0,9	0,9	3,0	
	20x130	130	1,2	1,2	1,2	3,0)
³⁾ The values are v	Rk,c see ETAG 0 alid for steel 5.	130 29, Annex C, exce 6 or greater. For s	teel 4.6 and 4.8	multiply V _{RK,b}		3,(≥ 200 mm: V _{Rk}	
Mundo Injection Sy	stem MIT-SE	Plus or MIT-C	OOL Plus for	masonry			

Г

				Chara	Characteristic resistance					
					Use category	ТУ				
Anchor size	Sleeve	Effective d/d anchorage w/d		w/d		d/d w/d w/w				
			40°C/24°C	80°C/50°C	120°C/72°C	For all temperature range				
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$	V _{Rk,b} ²⁾³⁾					
		[mm]			[kN]					
		Compressive	strength f _b ≥	10 N/mm ²						
M8	12x80	80	1,2	1,2	1,2	3,0				
MO / MIO/ IC MG	16x85	85	1,2	1,2	1,2	3,0				
M8 / M10/ IG-M6	16x130	130	1,5	1,5	1,5	3,5				
M12 / M16 /	20x85	85	1,2	1,2	1,2	4,0				
IG-M8 / IG-M10	20x130	130	1,5	1,5	1,5	4,0				

Values are valid for c_{cr} and c_{min}

²⁾ Calculation of V_{Rk,c} see ETAG 029, Annex C, except for shear load parallel to free edge with $c \ge 200 \text{ mm}$: V_{Rk,c,II} = V_{Rk,b} ³⁾ The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply V_{Rk,b} by 0,8

Table C56: Displacements

Anchor size	Sleeve	Effective anchorage depth h _{ef}	Ν	δ _N / N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δ√∞
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,34		0,27	0.55	0,9		
M8 / M10/	16x85	85	0,34		0,27	0,55	0,9		
IG-M6	16x130	130	0,43	0,80	0,34	0,69	1,0	1,20	1,80
M12 / M16 /	20x85	85	0,34		0,27	0,55		,	
IG-M8 / IG-M10	20x130	130	0,43		0,34	0,69	1,14		

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry

Performances clay hollow brick Porotherm Homebric Characteristic values of resistance under tension and shear load (continue) Displacements

		Clay hollow brick BGV Thermo					
Bulk density	ρ [kg/dm ³]	0,6		000			
	$p[N/mm^2]$	4, 6 or 10					1
Code		EN 771-1					
Producer (country code)		e.g. Leroux (FR)					
Brick dimensions	[mm]	500 x 200 x 314					
Drilling method	[iiiii]	Rotary					
			500			_	
200			2	61		\$5	
			manner	5		~~	
	n parameters	5	[-1]	577	All sizes		
Anchor size		5	[-] [mm]	577	All sizes 100 (120) ¹	()	
	c _{cr}	5	[-] [mm] [mm]	5**	All sizes 100 (120) ¹ 100 (120) ¹		
Anchor size Edge distance Minimum edge distance	Ccr	\$	[mm] [mm] [mm]	577	100 (120) ¹ 100 (120) ¹ 500		
Anchor size Edge distance Minimum edge distance Spacing	C _{cr} C _{min} ²⁾ S _{cr,II} S _{cr,⊥}	B	[mm] [mm] [mm] [mm]	5**	100 (120) ¹ 100 (120) ¹ 500 314		
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C59: Group fact	$\begin{array}{c} C_{cr} \\ C_{min}^{2)} \\ S_{cr,II} \\ S_{cr,\bot} \\ S_{min} \\ 120x85 \text{ and SH} \\ to ETAG 029, \end{array}$	l20x130 Annex C or group in case of	[mm] [mm] [mm] [mm] [mm]	ading	100 (120) ¹ 100 (120) ¹ 500		
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C59: Group fact Configuration	$\begin{array}{c} C_{cr} \\ C_{min}^{2)} \\ S_{cr,II} \\ S_{cr,\bot} \\ S_{min} \\ 120x85 \text{ and SH} \\ to ETAG 029, \end{array}$	l20x130 Annex C or group in case of with c ≥	[mm] [mm] [mm] [mm] [mm]	ading with s ≥	100 (120) ¹ 100 (120) ¹ 500 314		
Anchor size Edge distance Minimum edge distance Spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C59: Group fact Configuration II: anchors placed	$\begin{array}{c} C_{cr} \\ C_{min}^{2)} \\ S_{cr,II} \\ S_{cr,\bot} \\ S_{min} \\ 120x85 \text{ and SH} \\ to ETAG 029, \end{array}$	l20x130 Annex C or group in case of	[mm] [mm] [mm] [mm] [mm]	ading	100 (120) ¹ 100 (120) ¹ 500 314 100		1,7
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C59: Group fact Configuration	$\begin{array}{c} C_{cr} \\ C_{min}^{2)} \\ S_{cr,II} \\ S_{cr,\bot} \\ S_{min} \\ 120x85 \text{ and SH} \\ to ETAG 029, \end{array}$	l20x130 Annex C or group in case of with c ≥	[mm] [mm] [mm] [mm] [mm]	ading with s ≥	100 (120) ¹ 100 (120) ¹ 500 314		1,7
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C59: Group fact Configuration II: anchors placed parallel to horizontal joint ⊥: anchors placed	$\begin{array}{c} C_{cr} \\ C_{min}^{2)} \\ S_{cr,II} \\ S_{cr,\bot} \\ S_{min} \\ 120x85 \text{ and SH} \\ to ETAG 029, \end{array}$	I20x130 Annex C or group in case of with c ≥ 200	[mm] [mm] [mm] [mm] [mm]	ading with s ≥ 100	100 (120) ¹ 100 (120) ¹ 500 314 100		
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C59: Group fact Configuration II: anchors placed parallel to horizontal joint	$\begin{array}{c} C_{cr} \\ C_{min}^{2)} \\ S_{cr,II} \\ S_{cr,\bot} \\ S_{min} \\ 120x85 \text{ and SH} \\ to ETAG 029, \end{array}$	20x130 Annex C or group in case of with c ≥ 200 C _{cr}	[mm] [mm] [mm] [mm] [mm]	ading 	100 (120) ¹ 100 (120) ¹ 500 314 100		2,0

Configurat	tion	with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint		C _{cr}	500	α _{g,V,Ⅱ}	11	2,0
⊥: anchors placed perpendicular to horizontal joint	V	Ccr	314	$\alpha_{g,V,\perp}$	[-]	2,0
able C61: Group	factor for anchor	group in case of shea	loading perpendic	ular to free	edge	
Configura	tion	with c ≥	with s ≥	1		
II: anchors placed barallel to horizontal joint	V	Ccr	500	$\alpha_{g,v,ii}$	[-]	2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{cr}	314	$\alpha_{g,V,\perp}$	1-1	2,0

Brick type:	Clay hollow	brick BGV The	rmo					
Table C62:	Characterist	ic values of resi	stance under t	ension and she	ear loads			
					cteristic resistan	се		
					Jse category			
		Effective		d/d		d/d		
		anchorage		w/d		w/d		
Anchor size	Sleeve	depth		w/w		w/w		
				80°C/50°C	120°C/72°C	For all temperature range		
	$h_{ef} \qquad \qquad N_{Rk,b} = N_{Rk,p}^{(1)}$					V _{Rk,b} ²⁾³⁾		
		[mm] [kN]						
		Comp	ressive streng	th f _b ≥ 4 N/mm ²	2			
M8	12x80	80	0,6	0,6	0,6	2,0		
M8 / M10/	16x85	85	0,6	0,6	0,6	2,0		
IG-M6	16x130	130	1,2	1,2	0,9	2,5		
M12 / M16 / IG-M8 /	20x85	85	0,6	0,6	0,6	2,5		
IG-M10	20x130	130	1,2	1,2	0,9	2,5		
		Comp	ressive streng	th f _b ≥ 6 N/mm²	2			
M8	12x80	80	0,9	0,9	0,75	2,5		
M8 / M10/	16x85	85	0,9	0,9	0,75	2,5		
IG-M6	16x130	130	1,5	1,5	1,2	3,0		
M12 / M16 / IG-M8 /	20x85	85	0,9	0,9	0,75	3,0		
IG-M10	20x130	130	1,5	1,5	1,2	3,0		
		Compr	essive strengt	th f _b ≥ 10 N/mm	2			
M8	12x80	80	0,9	0,9	0,9	3,5		
M8 / M10/	16x85	85	0,9	0,9	0,9	3,5		
IG-M6	16x130	130	2,0	2,0	1,5	4,0		
M12 / M16 / IG-M8 /	20×85	85	0,9	0,9	0,9	4,0		
IG-M10	20x130	130	2,0	2,0	1,5	4,0		

1) Values are valid for c_{cr} and c_{min}

2) Calculation of V_{Rk,c} see ETAG 029, Annex C, except for shear load parallel to free edge with c ≥ 250 mm: V_{Rk,c,II} = V_{Rk,b} 3)

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{\textrm{Rk},b}$ by 0,8

Table C63: **Displacements**

Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ _{N0}	δ _{N∞}	V	δ_{V0}	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,26		0,21	0,41	0,7		
M8 / M10/	16x85	85	0,20		0,21	0,41	0,7		
IG-M6	16x130	130	0,43	0,80	0,34	0,69		1,00	1,50
M12 / M16 /	20x85	85	0,26		0,21	0,41	0,86	,	,
IG-M8 / IG-M10	20x130	130	0,43		0,34	0,69	,		

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry

Performances clay hollow brick BGV Thermo Characteristic values of resistance under tension and shear load Displacements

Brick type		Clay hollow brick	k		~		
Bulk density	ρ [kg/dm ³]	Calibric R+ 0,6			Suller.		
	p [kg/dm] $f_b \ge [N/mm^2]$	6, 9 or 12					-
Code	b ≤ [iw/iiiii]	EN 771-1				-	2
Producer (country code)		e.g. Terreal (FR)	1				
Brick dimensions	[mm]	500 x 200 x 314				< 11	
Drilling method	[]	Rotary				1	
Drining motilod		riotary		4			
			500 ——		5 m		
			14 4		5		
\leq][_ 86 2	20			
					10		
	-		T				
200					iñ		
	1						
	-ninn-nnn	and the second second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	unumunumunumunu			
Table C65: Installatio	n parameters	8					
Anchor size		5	[-]		All sizes)	
Anchor size Edge distance	Cor	3	[mm]		100 (120) ¹		
Anchor size Edge distance Minimum edge distance	C _{cr} C _{min} ²⁾	3	[mm] [mm]		100 (120) ¹ 100 (120) ¹		
Anchor size Edge distance Minimum edge distance	C _{cr} C _{min} ²⁾ S _{cr,II}	3	[mm] [mm] [mm]		100 (120) ¹ 100 (120) ¹ 500		
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing	C _{cr} C _{min} ²⁾	5	[mm] [mm]		100 (120) ¹ 100 (120) ¹		
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according	C _{cr} C _{min} ²⁾ S _{cr,1} S _{cr,⊥} S _{min} H20x85 and SH g to ETAG 029,	l20x130 Annex C or group in case o	[mm] [mm] [mm] [mm] [mm]	ading	100 (120) ¹ 100 (120) ¹ 500 314		
Anchor size Edge distance Minimum edge distance Spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C66: Group fac	C _{cr} C _{min} ²⁾ S _{cr,1} S _{cr,⊥} S _{min} H20x85 and SH g to ETAG 029,	l20x130 Annex C or group in case o with c ≥	[mm] [mm] [mm] [mm] [mm]	with s ≥	100 (120) ¹ 100 (120) ¹ 500 314		
Anchor size Edge distance Minimum edge distance Spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C66: Group fac Configuration II: anchors placed	C _{cr} C _{min} ²⁾ S _{cr,1} S _{cr,⊥} S _{min} H20x85 and SH g to ETAG 029,	l20x130 Annex C or group in case o	[mm] [mm] [mm] [mm] [mm]		100 (120) ¹ 100 (120) ¹ 500 314 100		1,7
Anchor size Edge distance Minimum edge distance Spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C66: Group fac Configuration	C _{cr} C _{min} ²⁾ S _{cr,1} S _{cr,⊥} S _{min} H20x85 and SH g to ETAG 029,	l20x130 Annex C or group in case o with c ≥	[mm] [mm] [mm] [mm] [mm]	with s ≥	100 (120) ¹ 100 (120) ¹ 500 314		1.0
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing 1) Value in brackets for SI 2) For V _{Rk,c} : cmin according Table C66: Group fac Configuration II: anchors placed parallel to horizontal joint L: anchors placed	C _{cr} C _{min} ²⁾ S _{cr,1} S _{cr,⊥} S _{min} H20x85 and SH g to ETAG 029,	l20x130 Annex C or group in case o with c ≥ 175	[mm] [mm] [mm] [mm] [mm]	with s ≥ 100	100 (120) ¹ 100 (120) ¹ 500 314 100		1,7 2,0 1,0
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C66: Group fac Configuration II: anchors placed parallel to horizontal joint	C _{cr} C _{min} ²⁾ S _{cr,1} S _{cr,⊥} S _{min} H20x85 and SH g to ETAG 029,	l20x130 Annex C or group in case o with c ≥ 175 c _{cr}	[mm] [mm] [mm] [mm] [mm]	with s ≥ 100 500	100 (120) ¹ 100 (120) ¹ 500 314 100		2

(Configuration		with c ≥	with s ≥		1.000		
II: anchors p parallel to hor joint	laced		C _{cr}	500	α _{g,∨,II}	[-]	2,0	
⊥: anchors p perpendicul horizontal j	ar to V		Ccr	314	$\alpha_{g,v,\perp}$	171	2,0	
Table C68:	Group factor fo	or anchor group ir	case of shear	loading perpend	licular to free e	dge		
(Configuration		with c ≥	with s ≥				
	II: anchors placed parallel to horizontal joint		C _{cr}	500	α _g ,v,ii	[-]	2,0	
⊥: anchors p perpendicul horizontal j	ar to 🛛 🗌 🗸 🗕		C _{cr}	314	$\alpha_{g,V,\perp}$	[¹]	2,0	
Table C69:	Characteristic	values of resistar	nce under tensio	THE PARTY AND				
			-		istic resistance			
				Use d/d	category			
Anchor size	Sleeve	Effective anchorage depth				d/d w/d w/w		
Anchor size	Sleeve	depin	40°C/24°C	80°C/50°C	120°C/72°C	te	For all mperature range	
		h _{ef}		V _{Rk,b} ²⁾³⁾				
		[mm]		$N_{Rk,b} = N_{Rk,p}^{(1)}$	[kN]			
			sive strength fb			-	-	
M8	12x80	80	0,9	0,9	0,75		3,0	
M8 / M10/	16x85	85	0,9	0,9	0,75	_	4,0	
IG-M6	16x130	130	1,2	1,2	0,9	-	4,0	
M12 / M16 / IG-M8 /	20x85	85	0,9	0,9	0,75	_	6,0	
IG-M10	20x130	130	1,2	1,2	0,9		6,0	
		Compres	sive strength f	≥ 9 N/mm ²				
M8	12x80	80	1,2	1,2	0,9		3,5	
M8 / M10/	16x85	85	1,2	1,2	0,9		5,0	
IG-M6	16x130	130	1,5	1,5	1,2		5,0	
M12/M16/	20x85	85	1,2	1,2	0,9		7,5	
IG-M8 / IG-M10	20x130	130	1,5	1,5	1,2		7,5	
	s are valid for c _{cr} an ation of V _{Rk,c} see E	TAG 029, Annex C, e				nm: V _{Rk}	$_{\rm c,II} = V_{\rm Rk,b}$	
¹⁾ Values ²⁾ Calcul	alues are valid for s	leer 5.6 of greater. Fo	Charles in Description					

Brick type:	Clay hollow b	rick Calibric R+					
Table C70:	Characteristic	values of resistan	ce under tensio	on and shear loa	ads (continue)		
				Character	istic resistance		
		Effective		d/d			
		anchorage		w/d			
Anabar aire	Cleave	0		w/w		w/w	
Anchor size	Sleeve depth	depth				For all	
			40°C/24°C	80°C/50°C	120°C/72°C	temperature	
			range				
		h _{ef}		V _{Rk,b} ²⁾³⁾			
		[mm]	$N_{\text{Rk},b} = N_{\text{Rk},p}^{(1)} V_{\text{Rk},b}$ [kN]				
		Compress	sive strength fb	≥ 12 N/mm²			
M8	12x80	80	1,2	1,2	0,9	4,0	
M8 / M10/	16x85	85	1,2	1,2	0,9	5,5	
IG-M6	16x130	130	1,5	1,5	1,2	5,5	
M12 / M16 /	20x85	85	1,2	1,2	0,9	8,5	
IG-M8 / IG-M10	20x130	130	1,5	1,5	1,2	8,5	

¹⁾ Values are valid for c_{cr} and c_{min}

²⁾ Calculation of $V_{\text{Rk,c}}$ see ETAG 029, Annex C, except for shear load parallel to free edge with $c \ge 250 \text{ mm}$: $V_{\text{Rk,c,II}} = V_{\text{Rk,b}}$ ³⁾ The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{\text{Rk,b}}$ by 0,8

Table C71: Displacements

Anchor size	Sleeve	Effective anchorage depth h _{ef}	Ν	δ _N / N	δ _{N0}	δ _{N∞}	V	δ_{V0}	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,34		0,27	0,55	1,0	1,10	1,65
M8 / M10/	16x85	85	0,34		0,27	0,55	1,43		
IG-M6	16x130	130	0,43	0,80	0,34	0,69	1,43		
M12 / M16 /	20x85	85	0,34	ŕ	0,27	0,55		2,00	3,00
IG-M8 / IG-M10	20x130	130	0,43		0,34	0,69	2,14		

Performances clay hollow brick Calibric R+ Characteristic values of resistance under tension and shear load (continue) Displacements

Brick type		Clay hollow brick				-	
	- Ilea/dm31	Urbanbric					
Bulk density	ρ [kg/dm ³]	0,7			and the	255	1
	₀ ≥ [N/mm²]	6, 9 or 12			59%	Ser .	
Code		EN 771-1			Er	-	
Producer (country code)		e.g. Imerys (FR)					
Brick dimensions	[mm]	560 x 200 x 274					
Drilling method		Rotary			_		
)		560			99,5	5	
		20	6,				
	(ø40)		5,6		= 20	00	
5	- Cord					1	
	63			40			
						ala.	
Table C73: Installation	n parameters	í.					
Anchor size			[-] [mm]		All sizes)	
Anchor size Edge distance	Ccr		[-] [mm] [mm]		All sizes 100 (120) ¹ 100 (120) ¹		
Anchor size Edge distance Minimum edge distance			[mm]		100 (120) ¹		
Anchor size Edge distance	C _{cr} C _{min} ²⁾	\$ 	[mm] [mm]		100 (120) ¹ 100 (120) ¹		
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing	Ccr Cmin ²⁾ Scr,Ⅱ Scr,⊥ Smin		[mm] [mm] [mm]		100 (120) ¹ 100 (120) ¹ 560		
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according	Ccr C _{min} ²⁾ Scr,II Scr,⊥ Smin 120x85 and SH to ETAG 029,	20x130 Annex C	[mm] [mm] [mm] [mm] [mm]	ading	100 (120) ¹ 100 (120) ¹ 560 274		
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according	Ccr C _{min} ²⁾ Scr,II Scr,⊥ Smin 120x85 and SH to ETAG 029,	20x130 Annex C	[mm] [mm] [mm] [mm] [mm]	ading with s ≥	100 (120) ¹ 100 (120) ¹ 560 274		
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C74: Group fact Configuration II: anchors placed	Ccr C _{min} ²⁾ Scr,II Scr,⊥ Smin 120x85 and SH to ETAG 029,	20x130 Annex C or group in case of t	[mm] [mm] [mm] [mm] [mm]		100 (120) ¹ 100 (120) ¹ 560 274 100		1,9
Anchor size Edge distance Minimum edge distance Spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C74: Group fact <u>Configuration</u> II: anchors placed parallel to horizontal	C _{cr} C _{min} ²⁾ S _{cr,II} S _{cr,⊥} S _{min} 120x85 and SH to ETAG 029,	20x130 Annex C or group in case of t with c ≥	[mm] [mm] [mm] [mm] [mm]	with s ≥	100 (120) ¹ 100 (120) ¹ 560 274		1,9
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C74: Group fact <u>Configuration</u> II: anchors placed parallel to horizontal joint	C _{cr} C _{min} ²⁾ S _{cr,II} S _{cr,⊥} S _{min} 120x85 and SH to ETAG 029,	20x130 Annex C or group in case of t with c ≥ 185 c _{cr}	[mm] [mm] [mm] [mm] [mm]	with s ≥ 100 560	100 (120) ¹ 100 (120) ¹ 560 274 100		2,0
Anchor size Edge distance Minimum edge distance Spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C74: Group fact <u>Configuration</u> II: anchors placed parallel to horizontal	C _{cr} C _{min} ²⁾ S _{cr,II} S _{cr,⊥} S _{min} 120x85 and SH to ETAG 029,	20x130 Annex C or group in case of t with c ≥ 185	[mm] [mm] [mm] [mm] [mm]	with s ≥ 100	100 (120) ¹ 100 (120) ¹ 560 274 100		

Confi	guration	with c	>	with s ≥			ľ1
II: anchors placed parallel to horizont joint		C _{cr}		560	α _{g,V,II}		2,0
⊥: anchors placed perpendicular to horizontal joint	V	Ccr		274	$\alpha_{g,V,\perp}$	[-]	2,0
Table C76: Gr	oup factor for anc	hor group in case	e of shear load	ding perpendi	icular to free e	dge	
Confi	guration	with c	2	with s ≥			
II: anchors placed parallel to horizont joint		Ccr		560	$\alpha_{g,V,0}$	Ţ.	2,0
⊥: anchors placed perpendicular to horizontal joint	V	Ccr		274	$\alpha_{g,V,\perp}$	[-]	2,0
Table C77: Cł	naracteristic value	es of resistance u	nder tension a	and shear loa	ds		
				Characte	ristic resistance	01	
				Use	category		
Anober size	Sleeve	Effective anchorage depth		d/d w/d w/w		d/d w/d w/w	
Anchor size	Sleeve	depin	40°C/24°C	80°C/50°C	120°C/72°C	tem	For all perature range
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$)	V	2)3) Rk,b
		[mm]			[kN]		
		Compressive s					
M8	12x80	80	0,9	0,9	0,75		3,0
M8 / M10/	16x85	85	0,9	0,9	0,75	-	3,0
IG-M6	16x130	130	2,0	2,0	1,5		3,0
M12/M16/	20x85	85	0,9	0,9	0,75	-	3,5
G-M8 / IG-M10	20x130	130	2,0	2,0	1,5		3,5
140	10-00	Compressive s			0.0		10
M8	12x80	80	0,9	0,9	0,9		4,0
M8 / M10/ IG-M6	16x85	85	0,9	0,9	0,9		4,0
M12/M16/	16x130 20x85	85	2,5 0,9	2,5 0,9	2,0 0,9		4,0 4,5
IG-M8 / IG-M10	20x85 20x130	130	2,5	2,5	2,0		4,5
1) Values are	valid for c_{cr} and c_{min} of $V_{Rk,c}$ see ETAG 0 are valid for steel 5.6	29, Annex C, except	for shear load pa	arallel to free ec	lge with c ≥ 190 r	l nm: V _{Rk}	-

Brick type: Cla	y hollow brick U	banbric				
Table C78: C	haracteristic values	s of resistance un	der tension a	nd shear loa	ds (continue)	
				Characte	ristic resistance	
				Use	e category	
		Effective		d/d		d/d
		anchorage		w/d		w/d
Anchor size	Sleeve	depth		w/w		w/w
Anchor Size	Sieeve	doptil				For all
			40°C/24°C	80°C/50°C	120°C/72°C	temperature
						range
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$)	V _{Rk,b} ²⁾³⁾
		[mm]			[kN]	
		Compressive st	rength f _b ≥ 12	N/mm ²		
M8	12x80	80	1,2	1,2	0,9	4,5
M8 / M10/	16x85	85	1,2	1,2	0,9	4,5
IG-M6	16x130	130	3,0	3,0	2,5	4,5
M12 / M16 /	20x85	85	1,2	1,2	0,9	5,0
IG-M8 / IG-M10	20x130	130	3,0	3,0	2,5	5,0

¹⁾ Values are valid for c_{cr} and c_{min}

²⁾ Calculation of V_{Rk,c} see ETAG 029, Annex C, except for shear load parallel to free edge with $c \ge 190 \text{ mm}$: V_{Rk,c,II} = V_{Rk,b}

³⁾ The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8

Table C79: Displacements

Anchor size	Sleeve	Effective anchorage depth h _{ef}	Ν	δ _N / N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δ∨∞
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,34		0.27	0.55			
M8 / M10/	16x85	85	0,34		0,27	0,55	1,30		
IG-M6	16x130	130	0,86	0,80	0,69	1,37		1,00	1,50
M12 / M16 /	20x85	85	0,34		0,27	0,55		,	,
IG-M8 / IG-M10	20x130	130	0,86		0,69	1,37	1,43		

Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry

Performances clay hollow brick Urbanbric Characteristic values of resistance under tension and shear load (continue) Displacements

Brick type	Clay hollow brick	_	- T		_	
	Brique creuse C40)			-	-
Bulk density ρ [kg/dm ³]	0,7					
Compressive strength $f_b \ge [N/mm^2]$	4, 8 or 12					
Code	EN 771-1					
Producer (country code)	e.g. Terreal (FR)	_			-	
Brick dimensions [mm]	500 x 200 x 200					
Drilling method	Rotary		0.0			
8 97		8 ** 6 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7			
Table C81: Installation paramete Anchor size	rs			All cizoe		
Anchor size	rs	[-] [mm]		All sizes 100 (120) ¹)	
Anchor size Edge distance c _{cr}	rs	[-] [mm] [mm]		100 (120) ¹		
Anchor size Edge distance C _{cr} Minimum edge distance C _{min} ²⁾	rs	[mm]				
Anchor size c_{cr} Edge distance c_{cr} Minimum edge distance $c_{min}^{(2)}$ Spacing $s_{cr,ll}$	rs	[mm] [mm] [mm] [mm]		100 (120) ¹ 100 (120) ¹ 500 200		
Anchor size Edge distance C _{cr} Minimum edge distance C _{min} ²⁾ Spacing	SH20x130 9, Annex C	[mm] [mm] [mm] [mm] [mm]	ding	100 (120) ¹ 100 (120) ¹ 500		
Anchor size c_{cr} Edge distance c_{cr} Minimum edge distance $c_{min}^{(2)}$ Spacing $s_{cr, \perp}$ Minimum spacing s_{min} 1) Value in brackets for SH20x85 and S 2) For V _{Rk,c} : c_{min} according to ETAG 029 Table C82: Group factor for anch	SH20x130 9, Annex C	[mm] [mm] [mm] [mm] [mm]	iding with s ≥	100 (120) ¹ 100 (120) ¹ 500 200		
Anchor size C_{cr} Edge distance C_{cr} Minimum edge distance $C_{min}^{(2)}$ Spacing $S_{cr,ll}$ Minimum spacing S_{min} 1) Value in brackets for SH20x85 and S 2) For V _{Rk,c} : C_{min} according to ETAG 029	GH20x130 9, Annex C 10r group in case of t	[mm] [mm] [mm] [mm] [mm]		100 (120) ¹ 100 (120) ¹ 500 200		2,0
Anchor size Edge distance c _{cr} Minimum edge distance c _{min} ²⁾ Spacing Scr.ll Minimum spacing s _{min}		[mm] [mm] [mm] [mm]		100 (120) ¹ 100 (120) ¹ 500 200		

Installation parameters

Config	uration	with c	2	with s ≥				
II: anchors placed parallel to horizonta joint	V•	Ccr		500	α _{g,V,II}	r.i	2,0	
⊥: anchors placed perpendicular to horizontal joint	V	Ccr		200	$\alpha_{g,V,\perp}$	[-]	2,0	
Table C84: Gro	up factor for and	hor group in case	of shear load	ding perpendi	cular to free e	dge		
Config	uration	with c	2	with s ≥				
II: anchors placed parallel to horizonta joint	V	Ccr		500	α, _{g,V,ll}		2,0	
⊥: anchors placed perpendicular to horizontal joint		Ccr		200	$\alpha_{g,V,\bot}$	[-]	2,0	
Table C85: Ch	aracteristic value	es of resistance u	nder tension a	Character	ds ristic resistance category			
		Effective		d/d w/d			d/d w/d	
Anchor size	nchor size Sleeve		40°C/24°C	w/w 80°C/50°C	120°C/72°C	tem	w/w For all perature	
		h _{ef}	-	$N_{Rk,b} = N_{Rk,p}^{1}$)		2)3) Rk.b	
		[mm]		NRK,b - NRK,p	[kN]	V	Rk.b	
		Compressive s	trength $f_{L} \ge 4$	N/mm ²	ford			
M8	12x80	80	0,6	0,6	0,6		0,9	
M8 / M10/	16x85	85	0,6	0,6	0,6		0,9	
IG-M6	16x130	130	0,6	0,6	0,6		0,9	
M12/M16/	20x85	85	0,6	0,6	0,6		0,9	
G-M8 / IG-M10	20x130	130	0,6	0,6	0,6		0,9	
		Compressive s	trength $f_b \ge 8$	N/mm ²		-		
M8	12x80	80	0,9	0,9	0,75		1,2	
M8 / M10/	16x85	85	0,9	0,9	0,75		1,2	
IG-M6	16x130	130	0,9	0,9	0,75		1,2	
M12/M16/	20x85	85	0,9	0,9	0,75	_	1,2	
G-M8 / IG-M10	20x130	130	0,9	0,9	0,75		1,2	
²⁾ Calculation	valid for c _{cr} and c _{min} of V _{Rk,c} see ETAG 0 are valid for steel 5.0	29, Annex C 6 or greater. For stee	l 4.6 and 4.8 mu	litiply V _{Rk,b} by 0,	8			
The second second second second	Custom MIT CE	Plus or MIT-COO	Plue for ma	sonry				

							ristic resist	ance	
							category		
			Effective	e		d/d			d/d
		a	nchoraç	ge		w/d w/w			w/d w/w
Anchor size	Sleev	ve	depth						For all
				40	°C/24°C	80°C/50°C	120°C/72	2°C te	emperature
									range
			h _{ef}			$N_{Rk,b} = N_{Rk,p}^{1}$)		V _{Rk,b} ²⁾³⁾
			[mm]				[kN]		
				ve streng		N/mm ²			
M8	12x8		80		1,2	1,2	0,9		1,5
M8 / M10/	16x8		85		1,2	1,2	0,9		1,5
IG-M6	16x1		130		1,2	1,2	0,9		1,5
M12/M16/	20x8		85		1,2	1,2	0,9		1,5
G-M8 / IG-M1	0 20x1		130		1,2	1,2	0,9		1,5
		Effective	N	S / N	2	\$	V	\$	5
Anchor size	Sleeve	anchorage depth h _{ef}	N	δ _N / N	δ _{N0}	δ _{N∞}	V	δ_{V0}	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,17		0,14	0,27			
M8 / M10/	16x85	85					-		
IG-M6 M12 / M16 /	16x130	130	0,14	0,80	0,11	0,23	0,3	0,9	1,35
IG-M8 /	20x85	85	0,17		0,14	0,27	-		
	20x130	130	0,14		0,11	0,23			
IG-M10	20x130	130	0,14		0,11	0,23			

g/dm ³] 0 J/mm ²] 4 E e [mm] 2	8locchi Legge ,6 , 6, 8 or 12 N 771-1 .g. Wienerbe 50 x 120 x 28 Rotary	erger (IT)	6-1				
I/mm ²] 4 E e [mm] 2	, 6, 8 or 12 N 771-1 .g. Wienerbe 50 x 120 x 25		6-1				
[mm] 2	N 771-1 .g. Wienerbe 50 x 120 x 25		6 - 1	 t			
e [mm] 2	.g. Wienerbe 50 x 120 x 25		6 - 1	t		-	
[mm] 2	50 x 120 x 25		6 -	t			
			6 -	t			
			6 -	f			
					7		
					1		
1			2	- 43 -	₹6		
}							
		250	~~~				
ameters		[-]	-		All sizes		
Ccr					100 (120) ¹		
Cmin		[mm]					
					60		
S _{cr,II}		[mm]			250		
S _{cr,II} S _{cr,⊥}		[mm]			250 120		
s _{cr,II} s _{cr,⊥} s _{min} 5; SH20x130	and SH20x20	[mm] [mm]	oading		250		
s _{cr,II} s _{cr,⊥} s _{min} 5; SH20x130		[mm] [mm] 00 e of tension I		th s ≥	250 120		
s _{cr,II} s _{rf,⊥} 5; SH20x130 or anchor g	roup in case	[mm] [mm] 00 e of tension I	wi		250 120 100		1,0
s _{cr,II} s _{cr,⊥} s _{min} 5; SH20x130	roup in case with ca	[mm] [mm] 00 e of tension I	wi	ths≥	250 120	[-]	1,0
1		Cor	[-] C _{or} [mm]	ameters [-] C _{or} [mm]	ameters	ameters [-] All sizes	ameters

II: anchors placed parallel to horizontal joint IV IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	hor group in case with c ≥ 60 ¹⁾ C _{cr} 60 ¹⁾ C _{cr} 293 and C94 values in	brackets	with s ≥ 100 ¹⁾ 250 100 ¹⁾ 250 d shear load: Characteri Use	α(g,V,II α(g,V,⊥	[-]	1,0 2,0 1,6 2,0 1,0 2,0 1,6 2,0
parallel to horizontal joint V L: anchors placed perpendicular to horizontal joint V 1) Only valid for V _{Rk,b} according to Table C Table C92: Group factor for anc Configuration II: anchors placed parallel to horizontal joint V L: anchors placed perpendicular to horizontal joint V 1) Only valid for V _{Rk,b} according to Table C Table C93: Characteristic value	c_{cr} $60^{1)}$ c_{cr}	brackets	250 100 ¹⁾ 250 ng perpendic with s ≥ 100 ¹⁾ 250 100 ¹⁾ 250 100 ¹⁾ 250 100 ¹⁾ 250 100 ¹⁾ 250	ular to free ed $\alpha_{g,V,\perp}$ $\alpha_{g,V,\parallel}$ $\alpha_{g,V,\parallel}$ s istic resistance category	ge	2,0 1,6 2,0 1,0 2,0 1,6
L: anchors placed perpendicular to horizontal joint ¹⁾ Only valid for V _{Rk,b} according to Table C Table C92: Group factor for anc Configuration II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint ¹⁾ Only valid for V _{Rk,b} according to Table C Table C93: Characteristic value	$\begin{array}{c c} & 60^{1)} \\ \hline & c_{cr} \\ \hline \\ $	brackets	100 ¹⁾ 250 ng perpendic with s ≥ 100 ¹⁾ 250 100 ¹⁾ 250 d shear load: Characteric Use	ular to free ed α _{g,v,l} α _{g,v,l} s istic resistance category	ge	1,6 2,0 1,0 2,0 1,6
perpendicular to horizontal joint V 1) Only valid for V _{Rk,b} according to Table C Table C92: Group factor for and Configuration II: anchors placed parallel to horizontal joint V L: anchors placed perpendicular to horizontal joint V 1) Only valid for V _{Rk,b} according to Table C Table C93: Characteristic value	C_{cr} C93 and C94 values in hor group in case with $c \ge$ $60^{1)}$ C_{cr} $60^{1)}$ C_{cr} 293 and C94 values in c_{cr}	brackets	250 ng perpendic with s ≥ 100 ¹⁾ 250 100 ¹⁾ 250 d shear loads Characteri Use	ular to free ed α _{g,v,l} α _{g,v,l} s istic resistance category	ge	2,0 1,0 2,0 1,6
horizontal joint 1) Only valid for V _{Rk,b} according to Table C Table C92: Group factor for and Configuration II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint 1) Only valid for V _{Rk,b} according to Table C Table C93: Characteristic value	A provide the second s	brackets	ng perpendic with s ≥ 100 ¹⁾ 250 100 ¹⁾ 250 d shear loads Characteri Use	ular to free ed α _{g,v,l} α _{g,v,l} s istic resistance category		1,0 2,0 1,6
Table C92: Group factor for and Configuration II: anchors placed parallel to horizontal joint Image: Configuration L: anchors placed perpendicular to horizontal joint Image: Configuration 1) Only valid for V _{Rk,b} according to Table C Table C93: Characteristic value	hor group in case with c ≥ 60 ¹⁾ C _{cr} 293 and C94 values in s of resistance und Effective anchorage	brackets	with s ≥ 100 ¹⁾ 250 100 ¹⁾ 250 d shear load: Characteri Use	$\alpha_{g,V,II}$ $\alpha_{g,V,\perp}$ s istic resistance category		2,0 1,6
Configuration II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint ¹⁾ Only valid for V _{Rk,b} according to Table C Table C93: Characteristic value	with c ≥ $60^{1)}$ c_{cr} $60^{1)}$ c_{cr} 293 and C94 values in s of resistance und Effective anchorage	brackets	with s ≥ 100 ¹⁾ 250 100 ¹⁾ 250 d shear load: Characteri Use	$\alpha_{g,V,II}$ $\alpha_{g,V,\perp}$ s istic resistance category		2,0 1,6
II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to horizontal joint ¹⁾ Only valid for V _{Rk,b} according to Table C Table C93: Characteristic value	60 ¹⁾ C _{cr} 60 ¹⁾ C _{cr} C93 and C94 values in s of resistance und Effective anchorage		100 ¹⁾ 250 100 ¹⁾ 250 ad shear loads Characteri Use	ag,v,⊥ s istic resistance category	[-]	2,0 1,6
parallel to horizontal joint Verefinition L: anchors placed perpendicular to horizontal joint Verefinition ¹⁾ Only valid for V _{Rk,b} according to Table C Table C93: Characteristic value	Cor 60 ¹⁾ Cor C93 and C94 values in s of resistance und Effective anchorage		250 100 ¹⁾ 250 Ind shear loads Characteri Use	ag,v,⊥ s istic resistance category	[-]	2,0 1,6
joint L: anchors placed perpendicular to horizontal joint ¹⁾ Only valid for V _{Rk,b} according to Table C Table C93: Characteristic value	60 ¹⁾ Cor C93 and C94 values in s of resistance und Effective anchorage		100 ¹⁾ 250 Ind shear load: Characteri Use	ag,v,⊥ s istic resistance category	[-]	1,6
L: anchors placed perpendicular to horizontal joint ¹⁾ Only valid for V _{Rk,b} according to Table C Table C93: Characteristic value	60 ¹⁾ Cor C93 and C94 values in s of resistance und Effective anchorage		100 ¹⁾ 250 Ind shear load: Characteri Use	s istic resistance category	6	1,6
perpendicular to horizontal joint ¹⁾ Only valid for V _{Rk,b} according to Table C Table C93: Characteristic value	Cor C93 and C94 values in s of resistance und Effective anchorage		250 Id shear load: Characteri Use	s istic resistance category		
¹⁾ Only valid for V _{Rk,b} according to Table C Table C93: Characteristic value	Effective anchorage		id shear load: Characteri Use	istic resistance category		
Table C93: Characteristic value	s of resistance un Effective anchorage		Characteri Use	istic resistance category		
Anchor size Sleeve	depth			and the second se	F	For all
Anchor size Sleeve	depth	The second second				
	and the second	40°C/24°C	80°C/50°C	120°C/72°C	tem	iperature range
	h _{ef}		NRK,b = NRK,p)		V _{Rk,b} ⁴⁾
	[mm]	1.1.2.1		[kN]	-	
	Compressive st	rength $f_b \ge 4 N$	/mm²		-	
M8 12x80	80					
M8 / M10/ 16x85	85	-	11	Contract of	1.00	
IG-M6 16x130	130	0,4	0,4	0,3	2,0	$(0,9)^{3}$
M12 / M16 / 20x85	85	-				
G-M8/IG-M10 20x130	130					
20x200	200 Compressive st	rangeth f > 6 N	/mm ²			
M8 12x80	80	enguite zon			T	
M8 / M10/ 16x85	85				1	
IG-M6 16x130	130				1.	
20x85	85	0,5	0,5	0,4	2,5	$(1,2)^{3}$
M12/M16/ 20x130	130			4 × 1 × 1 × 1		
G-M8 / IG-M10 20x200	200	-				
$ \begin{array}{c} 1) \\ 1) \\ 2) \\ Calculation of V_{Rk,c} see ETAG 02 \\ 3) \\ Values in brackets V_{Rk,c} = V_{Rk,b} fe \\ 4) \\ The values are valid for steel 5.6 \\ \end{array} $	29, Annex C, except for or anchors with cmin			e with c ≥ 125 m	n: V _{Rk,c}	:,ii = V _{Rk,b}
Mungo Injection System MIT-SE	Plus or MIT-COOL	Plus for mas	onry	1.1.1		

s					Character	19110 16919		
s					Use	category		
s		⊏ff	ective			d/d		
S			horage			w/d		
	Sleeve		epth -			w/w		
1				40°C/24°C	80°C/50°C	120°C/	72°C te	For all emperature range
			h _{ef}		$N_{Rk,b} = N_{Rk,p}$	1)		V _{Rk,b} ⁴⁾
			mm]			[kN]		11110
			•					
				າgth f _b ≥ 8 N	/mm²	1		
				0.6	0.6	0.5	5 3	$3,0^{2}$ (1,2) ³⁾
				-,-	-,-	.,.		,- (-,-,
]								
2					2			
				$gth f_b \ge 12 F$	l/mm ⁻	I		
				0,6	0,6	0,6	3 3	$3,5^{2}$ (1,5) ³
)								
		greater.	For steel 4.6	and 4.8 multi	ply V _{Rk,b} by 0,8			
Displace								
Sleeve	Effective anchorage depth h _{ef}	N	δ_{N} / N	δ_{N0}	δ _{N∞}	v	δ_{V0}	δ _{V∞}
	[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
		0,17						
	are valid for tion of V _{Rk,c} in brackets ues are valid	12x80 16x85 16x130 20x85 20x130 20x200 12x80 16x85 16x85 16x85 16x130 20x200 12x80 16x130 20x85 20x130 20x200 are valid for c _{cr} and c _{min} tion of V _{Rk,c} see ETAG 029, in brackets V _{Rk,c} = V _{Rk,b} for a ues are valid for steel 5.6 or Displacements Effective anchorage	12x80 16x85 16x130 20x85 20x130 20x200 20x200 20x200 16x85 16x85 16x85 16x85 16x85 16x85 16x85 16x130 20x85 20x130 20x200 are valid for c _{cr} and c _{min} tion of V _{Rk,c} see ETAG 029, Annex C in brackets V _{Rk,c} = V _{Rk,b} for anchors v ues are valid for steel 5.6 or greater. Displacements Effective anchorage N	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12x80 80 16x85 85 16x130 130 20x85 85 20x130 130 20x200 200 Compressive strength f _b ≥ 12 N 12x80 80 16x85 85 16x130 130 20x200 200 16x85 85 16x130 130 20x85 85 20x130 130 20x200 200 are valid for c _{cr} and c _{min} tion of V _{Rk,c} see ETAG 029, Annex C, except for shear load para in brackets V _{Rk,c} = V _{Rk,b} for anchors with c _{min} ues are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multi Displacements Effective anchorage N δ_N / N δ_{N0}	16x858516x13013020x858520x13013020x200200Compressive strength $f_b ≥ 12 \text{ N/mm}^2$ 12x808016x13013016x858516x13013020x20020020x13013020x200200are valid for c _{cr} and c _{min} tion of V _{Rk,c} see ETAG 029, Annex C, except for shear load parallel to free edgin brackets V _{Rk,c} = V _{Rk,b} for anchors with c _{min} ues are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply V _{Rk,b} by 0,8DisplacementsEffective anchorageNδ _N / Nδ _{N0} δ _{N∞}	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

and the state of the state of the state of the	on of the brid					
Brick type		Clay hollow brick Doppio Uni				
Bulk density	ρ [kg/dm ³]	0,9		-	-	1.00
	$p [N/mm^2]$	10, 16, 20 or 28		-		
Code	<u> </u>	EN 771-1				
Producer (country code)		e.g. Wienerberger (IT)				
Brick dimensions	[mm]	250 x 120 x 120			-	
Drilling method	[]	Rotary				
				0		
	n parameters			All sizes		
Anchor size Edge distance	Cor	s [-] [mm]		100 (120) ¹)	
Anchor size Edge distance		s [-] [mm]		100 (120) ¹ 60)	
Anchor size Edge distance Minimum edge distance	Ccr Cmin ²⁾ Scr,II	s [-] [mm] [mm] [mm]		100 (120) ¹ 60 250)	
Anchor size Edge distance Minimum edge distance	C _{cr} C _{min} ²⁾ S _{cr,II} S _{cr,⊥}	s [-] [mm] [mm] [mm] [mm]		100 (120) ¹ 60 250 120)	
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing	Ccr Cmin ²⁾ Scr,II	s [-] [mm] [mm] [mm]		100 (120) ¹ 60 250)	
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C98: Group fact	C _{cr} C _{min} ²⁾ S _{cr,1} S _{or,⊥} S _{min,11} S _{min,⊥} H20x85; SH20x t o ETAG 029,	s [-] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	10007	100 (120) ¹ 60 250 120 100)	
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C98: Group fact Configuration	C _{cr} C _{min} ²⁾ S _{cr,1} S _{or,⊥} S _{min,11} S _{min,⊥} H20x85; SH20x t o ETAG 029,	s [-] [mm] [mm] [mm] [mm] (130 and SH20x200 Annex C or group in case of tension with c ≥	with s ≥	100 (120) ¹ 60 250 120 100)	
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C98: Group fact	C _{cr} C _{min} ²⁾ S _{cr,1} S _{or,⊥} S _{min,11} S _{min,⊥} H20x85; SH20x t o ETAG 029,	s [-] [mm] [mm] [mm] [mm] [mm] [mm] [mm]	10007	100 (120) ¹ 60 250 120 100		1,0
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C98: Group fact Configuration II: anchors placed parallel to horizontal	Cor Cmin ²⁾ Scr,II Scr,⊥ Smin,II Smin,⊥ H20x85; SH20x to ETAG 029, tor for ancho	s [-] [mm] [mm] [mm] [mm] [mm] [mm] (130 and SH20x200 Annex C or group in case of tension with c ≥ 60 [mithed by the second s	with s ≥ 100	100 (120) ¹ 60 250 120 100 120)	

Config	uration	with c ≥		with s ≥			
II: anchors placed parallel to horizonta joint		C _{cr}		250	α _{g,V,II}	T.I	2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{cr}		120	$\alpha_{g,v,\perp}$	[-]	2,0
Table C100: Gro	up factor for anch	or group in case	of shear loadi	ng perpendic	ular to free ed	ge	
Config	uration	with c ≥		with s ≥			
II: anchors placed parallel to horizonta joint		C _{cr}		250	α _{g,V,II}	[-]	2,0
⊥: anchors placed perpendicular to horizontal joint		C _{cr}		120	$\alpha_{g,v,\perp}$	ы	2,0
Table C101: Ch	aracteristic values	of resistance un	der tension an	and the second second	s stic resistance		
		in the second second	-		category		
		Effective anchorage		d/d w/d w/w			
Anchor size	Sleeve	depth	40°C/24°C	80°C/50°C	120°C/72°C	terr	For All perature range
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$)	1	2)3)
		[mm]			[kN]		
	1 mar 1 mar	Compressive str	ength f _b ≥ 10 N	/mm ²		-	
M8	12x80	80	-				
M8 / M10/	16x85	85	_				
IG-M6	16x130	130	0,6	0,6	0,5		1,5
M12/M16/	20x85	85	-		2.4.5		1.10
G-M8 / IG-M10	20x130	130	-				
	20x200	200	angth f > 10 h	1/mm ²	-		
M8	12x80	Compressive stre 80				1	
M8 / M10/	16x85	85					
IG-M6	16x130	130	I Contra a	10.00			
	20x85	85	0,75	0,75	0,6		2,0
M12/M16/	20x130	130					
G-M8 / IG-M10	20x200	200			· · · · · · · · · · · · · · · · · · ·		
²⁾ Calculation	valid for c_{cr} and c_{min} of $V_{Rk,c}$ see ETAG 029 are valid for steel 5.6 of), Annex C	4.6 and 4.8 multi	ply V _{Rk,b} by 0,8		L	
		Plus or MIT-COOL	Disc (

						Characte	ristic resis	stance		
						Use	category	/		
			Eff	ective			d/d			
				horage			w/d w/w			
Anchor size	5	Sleeve	d	epth –			<u>vv/ vv</u>		For All	
					40°C/24°C	80°C/50°C	2 120°C/72°C tem		temperati range	
		-		h _{ef}		$N_{Rk,b} = N_{Rk,p}$	1)		V _{Rk,b} ²⁾³	
			[mm]			[kN]			
	_	ç	Compre	ssive stren	gth f _b ≥ 20 №	/mm²				
M8	-	12x80		80						
M8 / M10/		16x85		85						
IG-M6	1	6x130		130	0,9	0,9	0.7	5	2,0	
M12 / M16 /		20x85		85	0,5	0,0	0,75	2,0		
G-M8 / IG-M10)	0x130		130						
	2	0x200		200						
				essive stren	gth f _b ≥ 28 №	l/mm²				
M8		12x80		80						
M8 / M10/		16x85		85						
IG-M6	-	6x130		130	1,2	1,2	0,9	9	2,5	
M12 / M16 /		20x85		85	,	,	,	0,0	, -	
G-M8 / IG-M10)	0x130 0x200		130 200						
Table C103:	Displace	monto								
	Displace				1					
Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ _{N0}	δ _{N∞}	V	δνα	δν	
0120		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mr	n] [mr	
All sizes	All sizes									
All sizes	All sizes	All sizes	0,26	1,20	0,31	0,62	0,6	0,3		

Brick type		Hollow light weight c Bloc creux B40	oncrete				
Bulk density	ρ [kg/dm ³]	0,8	40				
	$p [N/mm^2]$	4					E C
Code	0 - [EN 771-3					
Producer (country code)		e.g. Sepa (FR)				_1_	
Brick dimensions	[mm]	494 x 200 x 190		08	and a local sector		and a
Drilling method		Rotary					
200					17		
Anchor size			[-] [mm]		All sizes 100 (120) ¹)	
Anchor size Edge distance	n parameters		[-] [mm] [mm]		100 (120) ¹ 100 (120) ¹		
Anchor size Edge distance Minimum edge distance	C _{cr} C _{min} ²⁾ S _{cr,II}		[mm] [mm] [mm]		100 (120) ¹ 100 (120) ¹ 494		
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing	C _{cr} C _{min} ²⁾ S _{cr,⊥} S _{cr,⊥} S _{min}		[mm] [mm]		100 (120) ¹ 100 (120) ¹		
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according	$\begin{array}{c} C_{cr} \\ \hline C_{min}^{2)} \\ \hline S_{cr,II} \\ \hline S_{cr,\bot} \\ \hline S_{min} \\ \hline 120x85 \text{ and SH} \\ to ETAG 029, \end{array}$	20x130 Annex C	[mm] [mm] [mm] [mm] [mm]	ding with s ≥	100 (120) ¹ 100 (120) ¹ 494 190		
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C106: Group fact Configuration II: anchors placed	$\begin{array}{c} C_{cr} \\ \hline C_{min}^{2)} \\ \hline S_{cr,II} \\ \hline S_{cr,\bot} \\ \hline S_{min} \\ \hline 120x85 \text{ and SH} \\ to ETAG 029, \end{array}$	20x130 Annex C r group in case of ter	[mm] [mm] [mm] [mm] [mm]		100 (120) ¹ 100 (120) ¹ 494 190		1,5
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C106: Group fact Configuration II: anchors placed parallel to horizontal	$\begin{array}{c} C_{cr} \\ \hline C_{min}^{2)} \\ \hline S_{cr,II} \\ \hline S_{cr,\bot} \\ \hline S_{min} \\ \hline 120x85 \text{ and SH} \\ to ETAG 029, \end{array}$	20x130 Annex C r group in case of ter with c ≥	[mm] [mm] [mm] [mm] [mm]	with s ≥	100 (120) ¹ 100 (120) ¹ 494 190	1	
 ²⁾ For V_{Rk,c}: c_{min} according Table C106: Group fact Configuration II: anchors placed parallel to horizontal joint 	$\begin{array}{c} C_{cr} \\ \hline C_{min}^{2)} \\ \hline S_{cr,II} \\ \hline S_{cr,\bot} \\ \hline S_{min} \\ \hline 120x85 \text{ and SH} \\ to ETAG 029, \end{array}$	20x130 Annex C r group in case of ter with c ≥ 100 c _{or}	[mm] [mm] [mm] [mm] [mm]	with s ≥ 100 494	100 (120) ¹ 100 (120) ¹ 494 190 100		1,5 2,0
Anchor size Edge distance Minimum edge distance Spacing Minimum spacing ¹⁾ Value in brackets for SH ²⁾ For V _{Rk,c} : c _{min} according Table C106: Group fact Configuration II: anchors placed parallel to horizontal	$\begin{array}{c} C_{cr} \\ \hline C_{min}^{2)} \\ \hline S_{cr,II} \\ \hline S_{cr,\bot} \\ \hline S_{min} \\ \hline 120x85 \text{ and SH} \\ to ETAG 029, \end{array}$	20x130 Annex C r group in case of ter with c ≥ 100	[mm] [mm] [mm] [mm] [mm]	with s ≥ 100	100 (120) ¹ 100 (120) ¹ 494 190 100	1	

	Configuratio	202		with c ≥	1	with s ≥		-	1
II: anchors	Configuration					0.351 412			4.4
parallel to ho	orizontal	V	-	50		100	α	,V,II	1,1
joint		<u>F</u>		Ccr		494		[-]	2,0
⊥: anchors perpendic		10		100		100			1,1
horizonta				Ccr		190	αg	V,⊥	2,0
Table C108	: Group f	actor for anc	hor group	in case of	shear load	ling perper	ndicular to	free edge	
	Configuratio	on		with c ≥		with s ≥			1
II: anchors parallel to ho joint	placed prizontal	[[Ccr		494	άg	.V,II	2,0
⊥: anchors perpendici horizonta	lar to	V		Ccr		190	αg	.V	2,0
. 1					Char	acteristic re Use catego			a/.a
Anchor size	Sleeve	Effective anchorage depth		d/d		w/d w/w	I	d/d w/d w/w	
	Gleeve		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	range
		h _{et}		$N_{Rk,b} = N_{Rk,c}$	1)	1	$N_{Rk,b} = N_{Rk,b}$	1)	V _{Rk,b} ²⁾³⁾
		[mm]				[kN]			
M8	12x80	90			ngth $f_b \ge 4$		0.0	0.75	20
M8 / M10/	16x85	80 85	1,2 1,2	0,9 0,9	0,75 0,75	0,9 1,2	0,9 0,9	0,75 0,75	3,0
IG-M6	16x130	130	1,2	0,9	0,75	1,2	0,9	0,75	3,0
M12/M16/	20x85	85	1,2	0,9	0,75	1,2	0,9	0,75	3,0
IG-M8 /	20x130	130	1,2	0,9	0,75	1,2	0,9	0,75	3,0
²⁾ Calc	es are valid f ulation of V _R values are va	for c _{cr} and c _{min} _{k,c} see ETAG 02 alid for steel 5.6 ements	29, Annex C or greater.	, except for	shear load pa	arallel to free	edge with c		
Anchor size	Sleeve	Effective anchorag depth h _{ef}	e N	δ _N / N	δ _{ΝΟ}	δ _{N∞}	V	δ _{V0}	δ _{∨∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	
All sizes	All sizes	All sizes	0,34	0,90	0,31	0,62	0,86	0,9	1,35
Mungo Ir	jection Sy	stem MIT-SE	Plus or M	IIT-COOL F	Plus for ma	sonry			5
Performa	nces hollo	w light weigh	nt concret	e brick Blo	c creux B4	0	0	Annex C	43

Code EN 771-3 EN 771-3 Producer (country code) e.g. Bisotherm (DE) Bisotherm (DE) Brick dimensions [mm] 300 x 123 x 248 Drilling method Rotary Table C112: Installation parameter Anchor size (-) All sizes Edge distance 0//// (-) (mm) 1,5 th w/// (-) Minimum edge distance 0//// (-) (mm) 3 th w/// (-) Minimum spacing Sm/m (mm) 3 th w// (-) Table C113: Group factor for anchor group in case of tension loading 1. Configuration with 6 2 with 5 2 1. II: anchors placed perpendicular to free dige 1.5 th ef 3 th m//// (-) 2. Table C114: Group factor for anchor group in case of shear loading parallel to free edge 0. Configuration with 6 2 with 5 2 1. II: anchors placed perpendicular to free dige 60 120 $\alpha_0 v.t.$ [-] II: anchors placed perpendicular to free dige 60 120 $\alpha_0 v.t.$ [-] 0. II: anchors placed perpendicular to free adge 60	Brick type	Solid light weight	ick		de			
Compressive strength $f_b \ge [N/mn^2]$ 2 Code EN 771-3 Producer (country code) e.g. Bisotherm (DE) Brick dimensions [mm] 300 x 123 x 248 Image: Control of the con	Bulk density	ρ [kg/dm ³]	0,6			10	an Alashara	
Code EN 771-3 EN 771-3 En 23 bistherm (DE) Prick dimensions [mm] 300 x 123 x 248 Image: Status of the status of	Compressive strength f	2	1	CCC 1	20			
Brick dimensions [mm] 300 x 123 x 248 Image: Constraint of the second se		101.01	EN 771-3					
Drilling method Rotary Table C112: Installation parameter Anchor size Car Immune dige distance All sizes Edge distance Car Imm 60 Spacing Ser Imm Go Spacing Ser Imm 60 Spacing Ser Imm 3*her Minimum spacing Seren Imm 120 Table C113: Group factor for anchor group in case of tension loading Configuration with c ≥ with s ≥ Imm 120 Table C113: Group factor for anchor group in case of tension loading II: anchors placed perpendicular to for anchor group in case of shear loading parallel to free edge Imm 22 Table C114: Group factor for anchor group in case of shear loading parallel to free edge Imm 22 Imm 22 Table C114: Group factor for anchor group in case of shear loading parallel to free edge Configuration with c ≥ with s ≥ Imm 22 II: anchors placed parallel to free placed parallel to free edge Imm 124 120 20 22 Go	Producer (country code)		e.g. Bisotherm (D	E)			2.2.2	
Table C112: Installation parameter Anchor size [-] All sizes Edge distance C_{or} [mm] 1,5*h_{eff} Minimum edge distance C_{orin} [mm] 3*h_{eff} Minimum edge distance C_{orin} [mm] 3*h_{eff} Minimum spacing Ser [mm] 3*h_{eff} 10 Table C113: Group factor for anchor group in case of tension loading Configuration with c ≥ with s ≥ 1 11: anchors placed 90 120 q_a, x_{ib} 2, 12: anchors placed 124 120 q_a, x_{ib} 2, 14: anchors placed 15*hef 3*heft q_a, x_{ib} 2, Table C114: Group factor for anchor group in case of shear loading parallel to free edge 0, 0, 0, 16: anchors placed 60 120 q_a, x_{ib} 2, 0, 17: anchors placed 60 120 q_a, x_{ib} 2, 0, 18: anchors placed 60 120 q_a, x_{ib} 2, 0, 0, 0, 0, <t< td=""><td>Brick dimensions</td><td>[mm]</td><td>300 x 123 x 248</td><td></td><td></td><td>and the second second</td><td>SA (2015)</td><td></td></t<>	Brick dimensions	[mm]	300 x 123 x 248			and the second second	SA (2015)	
Anchor size [-] All sizes Edge distance C_{cr} [mm] 1,5 ⁺ her Minimum edge distance C_{mm} [mm] 1,5 ⁺ her Minimum edge distance C_{mm} [mm] 60 Spacing Sw [mm] 3 ⁺ her Minimum spacing Sw [mm] 3 ⁺ her Minimum spacing Sw [mm] 120 Table C113: Group factor for anchor group in case of tension loading Il: anchors placed 90 120 1, parallel to horizontal joint Image for anchor group in case of shear loading parallel to free edge 1, Configuration with c ≥ with s ≥ [-] L: anchors placed parallel to forizontal joint Image for anchor group in case of shear loading parallel to free edge 0, Configuration with c ≥ with s ≥ [-] 0, L: anchors placed parallel to horizontal joint Image for anchor group in case of shear loading parallel to free edge 0, L: anchors placed parallel to horizontal joint Image for anchor group in case of shear loading perpendicular to free edge 0, L: anchors placed parallel to horizon	Drilling method		Rotary			- Araziep		
Edge distance C_{cr} [mm] 1,5'het Minimum edge distance G_{min} [mm] 60 Spacing Set [mm] 3'het Minimum spacing Semin [mm] 120 Table C113: Group factor for anchor group in case of tension loading Configuration with $c \ge$ with $s \ge$ 1 It: anchors placed perpendicular to horizontal joint 90 120 $a_{q,N,i}$ 2, L: anchors placed perpendicular to horizontal joint 1,5'hef 3'het $a_{q,N,i}$ 2, Table C114: Group factor for anchor group in case of shear loading parallel to free edge 0, 120 $a_{q,N,i}$ 2, Table C114: Group factor for anchor group in case of shear loading parallel to free edge 0, 2, 0, I: anchors placed perpendicular to horizontal joint V 90 120 $a_{q,V,i}$ 1, I: anchors placed perpendicular to horizontal joint V 1,24 120 $a_{q,V,i}$ 2, Table C114: Group factor for anchor group in case of shear loading perpendicular to free edge 0, 2, 0, 2, I: anchors placed perpendicular to hor	Table C112: Installatio	on parameter						
Edge distance C_{cr} [mm] 1,5'her Minimum edge distance G_{min} [mm] 60 Spacing Set [mm] 3'her Minimum spacing Series [mm] 3'her Table C113: Group factor for anchor group in case of tension loading 120 120 Table C113: Group factor for anchor group in case of tension loading 120 1,5'hef It: anchors placed perpendicular to horizontal joint 90 120 1,2,3'her 1.2 anchors placed perpendicular to horizontal joint 1,5'hef 3'her $\alpha_{g,N,i}$ [-] 1.2 anchors placed perpendicular to horizontal joint 1,5'hef 3'her $\alpha_{g,N,i}$ 2, Table C114: Group factor for anchor group in case of shear loading parallel to free edge 0, 2, 2, Table C114: Group factor for anchor group in case of shear loading parallel to free edge 0, 2, 2, L: anchors placed perpendicular to horizontal joint IV 90 120 $\alpha_{g,V,i}$ 1, 12 anchors placed perpendicular to horizontal joint IV 1,2,4 120 2, 2, Table C115: Group factor for anchor group in case of shea	Anchor size	100		[-]		All sizes		
Spacing scr (mm) 3'her Minimum spacing smin (mm) 120 Table C113: Group factor for anchor group in case of tension loading Configuration with $c \ge$ with $s \ge$ 1 H: anchors placed 90 120 1 parallel to horizontal joint 124 120 1 L: anchors placed 124 120 1 perpendicular to horizontal joint 1.5'hef 3'her $a_{9,N,L}$ 1 Table C114: Group factor for anchor group in case of shear loading parallel to free edge 0 120 $a_{9,N,L}$ 0 It: anchors placed parallel to horizontal joint 90 120 $a_{9,N,L}$ 1 2 It: anchors placed perpendicular to horizontal joint 90 120 $a_{9,V,L}$ 1 0 It: anchors placed perpendicular to free edge 60 120 $a_{9,V,L}$ 1 0 It: anchors placed perpendicular to free edge 60 120 $a_{9,V,L}$ 2 0 It: anchors placed perpendicular to free edge 60 120 $a_{9,V,L}$ 2 0 2	Edge distance	Cor		[mm]		1,5*h _{ef}		
Minimum spacing s_{min} (mm) 120 Table C113: Group factor for anchor group in case of tension loading Configuration with $c \ge$ with $s \ge$ 1 Bit anchors placed parallel to horizontal joint 90 120 $\alpha_{g,N,0}$ 1. L: anchors placed perpendicular to horizontal joint 1.5"hef 3"hef $\alpha_{g,N,0}$ [-] 1. Table C114: Group factor for anchor group in case of shear loading parallel to free edge Configuration with $c \ge$ with $s \ge$ II: anchors placed parallel to horizontal joint IV 90 120 $\alpha_{g,V,0}$ 2. II: anchors placed perpendicular to introp prove placed parallel to horizontal joint IV 80 120 $\alpha_{g,V,0}$ [-] 0. II: anchors placed parallel to horizontal joint IV 80 120 $\alpha_{g,V,0}$ [-] 0. 2. Is anchors placed parallel to horizontal joint IV 80 IV 2. IV 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. <td>Minimum edge distance</td> <td>Cmin</td> <td></td> <td>[mm]</td> <td></td> <td></td> <td></td> <td></td>	Minimum edge distance	Cmin		[mm]				
Table C113: Group factor for anchor group in case of tension loading Configuration with $c \ge$ with $s \ge$ II: anchors placed perpendicular to horizontal joint 90 120 $a_{q,N,III}$ [-] 1, L: anchors placed perpendicular to horizontal joint 124 120 $a_{q,N,III}$ [-] 1, Table C114: Group factor for anchor group in case of shear loading parallel to free edge Configuration with $c \ge$ with $s \ge$ 0, I: anchors placed perpendicular to incloar group in case of shear loading parallel to free edge Configuration with $c \ge$ with $s \ge$ 0, I: anchors placed perpendicular to incloar group in case of shear loading parallel to free edge 0, Configuration with $c \ge$ with $s \ge$ 0, I: anchors placed perpendicular to incloar group in case of shear loading perpendicular to free edge Configuration with $c \ge$ with $s \ge$ 0, I: anchors placed parallel to horizontal joint 120 $a_{q,$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	viinimum spacing	Smin		լաայ		120		
II: anchors placed parallel to horizontal joint 90 120 $\alpha_{g,N,ll}$ 1,5'hef 3'het $\alpha_{g,N,ll}$ [-] 1,2,1'het II: anchors placed perpendicular to horizontal joint 1,5'hef 3'het $\alpha_{g,N,ll}$ [-] 1,2'het Table C114: Group factor for anchor group in case of shear loading parallel to free edge 60 120 $\alpha_{g,V,ll}$ [-] 0,1'het II: anchors placed perpendicular to horizontal joint V 60 120 $\alpha_{g,V,ll}$ [-] 0,1'het II: anchors placed perpendicular to horizontal joint V 60 120 $\alpha_{g,V,ll}$ [-] 0,1'het II: anchors placed perpendicular to horizontal joint V 60 120 $\alpha_{g,V,ll}$ [-] 0,1'het II: anchors placed perpendicular to for anchor group in case of shear loading perpendicular to free edge 0,1'het 2,1'het 0,1'het 2,1'het II: anchors placed perpendicular to for anchor group in case of shear loading perpendicular to free edge 0,1'het 2,2'het 0,1'het 2,1'het 0,1'het 2,1'het 2,1'het 1,1'het 2,1'het 1,1'het 1,1'het 1,1'het 1,1'het 1,1'het 1,1'het		tor for ancho		tension loa				
parallel to horizontal joint1,5'hef3'hef $\alpha_{g,N,0}$ $\alpha_{g,N,0}$ $2,$ 1: anchors placed perpendicular to horizontal joint124120 $\alpha_{g,N,0}$ $1,$ $1,$ Table C114: Group factor for anchor group in case of shear loading parallel to free edgeConfigurationwith $c \geq$ with $s \geq$ $0,$ II: anchors placed perpendicular to horizontal joint $V \bullet \bullet \bullet$ 60 120 $\alpha_{g,V,0}$ $2,$ I: anchors placed perpendicular to horizontal joint $V \bullet \bullet \bullet$ 60 120 $\alpha_{g,V,0}$ $2,$ I: anchors placed perpendicular to horizontal joint $V \bullet \bullet \bullet \bullet$ 60 120 $\alpha_{g,V,0}$ $2,$ I: anchors placed perpendicular to horizontal joint $V \bullet \bullet \bullet \bullet \bullet$ 60 120 $\alpha_{g,V,0}$ $2,$ I: anchors placed perpendicular to horizontal joint $V \bullet \bullet$	+	- I - I	and a state of the					4.4
joint1,5°hef3°het11: anchors placed perpendicular to horizontal joint1241201,1: anchors placed parallel to for1,5°hef3°het $\alpha_{0,N,\perp}$ [-]1,Table C114: Group factor for anchor group in case of shear loading parallel to free edge0,Configurationwith $c \ge$ with $s \ge$ 0,II: anchors placed perpendicular to horizontal joint0120 $\alpha_{0,V,\parallel}$ [-]II: anchors placed perpendicular to horizontal joint0120 $\alpha_{0,V,\parallel}$ 0,II: anchors placed perpendicular to horizontal joint0120 $\alpha_{0,V,\parallel}$ 0,II: anchors placed perpendicular to horizontal joint0120 $\alpha_{0,V,\parallel}$ 0,II: anchors placed perpendicular to horizontal joint0120 $\alpha_{0,V,\parallel}$ 1II: anchors placed parallel to horizontal joint0120 $\alpha_{0,V,\parallel}$ 1II: anchors placed perpendicular to horizontal joint0120 $\alpha_{0,V,\parallel}$ 0,II: anchors placed perpendicular to horizontal joint0120 $\alpha_{0,V,\parallel}$ 1II: anchors placed perpendicular to horizontal joint01200<			90		120	GaNil		4,0
1241201perpendicular to horizontal joint1,5*hef3*hef $\alpha_{g,N,\perp}$ 1Table C114: Group factor for anchor group in case of shear loading parallel to free edgeConfigurationwith $c \ge$ with $s \ge$ 0II: anchors placed perpendicular to horizontal joint $V \bullet \bullet$ 60120 $\alpha_{g,V,II}$ 0,12: anchors placed perpendicular to horizontal joint $V \bullet \bullet$ 60120 $\alpha_{g,V,II}$ 0,12: anchors placed perpendicular to horizontal joint $V \bullet \bullet$ 60120 $\alpha_{g,V,II}$ 2,Table C115: Group factor for anchor group in case of shear loading perpendicular to free edgeConfigurationwith $c \ge$ with $s \ge$ 0,II: anchors placed perpendicular to horizontal joint $0,$ 2,0,12: anchors placed parallel to horizontal joint $0,$ 120 $\alpha_{g,V,II}$ 2,13: anchors placed perpendicular to free edge $0,$ 120 $\alpha_{g,V,II}$ 2,14: anchors placed perpendicular to horizontal joint $0,$ $1,$ $0,$ 2,15: anchors placed perpendicular to horizontal joint $0,$ $1,$ $0,$ $2,$ 16: $1,$ $0,$ $1,$ $1,$ $0,$ $2,$ 16: $0,$ $120,$ $\alpha_{g,V,II}$ $1,$ $2,$ 16: $1,$ $1,$ $1,$ $1,$ $1,$ $1,$ $1,$ 17: $0,$ $1,$ $1,$ $1,$ $1,$ $1,$ <t< td=""><td></td><td>11</td><td>1,5*hef</td><td></td><td>3*h_{et}</td><td>g,(4,0</td><td>I-1</td><td>2,0</td></t<>		11	1,5*hef		3*h _{et}	g,(4,0	I-1	2,0
horizontal joint1,5*hef3*her4.42,Table C114: Group factor for anchor group in case of shear loading parallel to free edgeConfigurationwith c ≥with s ≥0,II: anchors placed parallel to horizontal joint00120 $\alpha_{g_i}v_{,il}$ 0,1.: anchors placed perpendicular to horizontal joint00120 $\alpha_{g_i}v_{,il}$ 0,1.: anchors placed perpendicular to horizontal joint00120 $\alpha_{g_i}v_{,il}$ 0,1.: anchors placed perpendicular to horizontal joint00120 $\alpha_{g_i}v_{,il}$ 0,Table C115: Group factor for anchor group in case of shear loading perpendicular to free edgeConfigurationwith c ≥with s ≥0,11: anchors placed parallel to horizontal joint00120 $\alpha_{g_i}v_{,il}$ 0,1.: anchors placed perpendicular to perpendicular to horizontal joint00120 $\alpha_{g_i}v_{,il}$ 0,1.: anchors placed perpendicular to horizontal joint0,1,5*hef120 $\alpha_{g_i}v_{,il}$ 0,1.: anchors pla			124		120			1,1
Noncontral joint Table C114: Group factor for anchor group in case of shear loading parallel to free edge Configuration with $c \ge$ with $s \ge$ 0 II: anchors placed parallel to horizontal joint $V \bullet \bullet$ 60 120 $\alpha_{g,V,II}$ 2, I: anchors placed perpendicular to horizontal joint $V \bullet \bullet$ 60 120 $\alpha_{g,V,II}$ [-] 0, I: anchors placed perpendicular to horizontal joint $V \bullet \bullet$ 60 120 $\alpha_{g,V,II}$ [-] 0, Table C115: Group factor for anchor group in case of shear loading perpendicular to free edge 0, 2, 0, II: anchors placed parallel to horizontal joint $V \bullet \bullet$ 124 120 $\alpha_{g,V,II}$ 2, Table C115: Group factor for anchor group in case of shear loading perpendicular to free edge 0, 0, 2, 0, II: anchors placed parallel to horizontal joint $V \bullet \bullet$ 60 120 $\alpha_{g,V,II}$ 2, 0, II: anchors placed perpendicular to intrace and perpendicular to horizontal joint $0, 120, \alpha_{g,V,II}$ 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, <td< td=""><td></td><td>•</td><td colspan="2">1,5*hef</td><td>3*hef</td><td>α_{g,N,⊥}</td><td></td><td>2,0</td></td<>		•	1,5*hef		3*hef	α _{g,N,⊥}		2,0
II: anchors placed parallel to horizontal joint60120 $\alpha_{g,V,II}$ 0,1: anchors placed perpendicular to horizontal joint $V \bullet \bullet$ 60120 $\alpha_{g,V,II}$ 2,1: anchors placed perpendicular to horizontal joint $V \bullet \bullet$ 60120 $\alpha_{g,V,II}$ 2,Table C115: Group factor for anchor group in case of shear loading perpendicular to free edgeConfigurationwith $c \ge$ with $s \ge$ II: anchors placed parallel to horizontal joint $V \bullet \bullet$ 60120 $\alpha_{g,V,II}$ 0,21: anchors placed perpendicular to horizontal joint $V \bullet \bullet \bullet$ 60120 $\alpha_{g,V,II}$ 1: anchors placed perpendicular to horizontal joint $V \bullet \bullet \bullet$ 60120 $\alpha_{g,V,II}$ 1: anchors placed perpendicular to horizontal joint $V \bullet \bullet \bullet \bullet$ 1,5*hef120 $\alpha_{g,V,II}$ 1112 <th></th> <th>tor for ancho</th> <th></th> <th>snear load</th> <th></th> <th>iree eage</th> <th></th> <th></th>		tor for ancho		snear load		iree eage		
parallel to horizontal jointVImage: second seco			101511 2145					0,6
jointiiii1: anchors placed perpendicular to horizontal jointiiiiii124120 $\alpha_{g,V,L}$ iii <td>parallel to horizontal</td> <td>V ••</td> <td></td> <td></td> <td></td> <td>α_{g,V,II}</td> <td></td> <td>2,0</td>	parallel to horizontal	V ••				α _{g,V,II}		2,0
perpendicular to horizontal jointImage: state interval and the state interval and th						[-]		0,6
Table C115: Group factor for anchor group in case of shear loading perpendicular to free edgeConfigurationwith $c \ge$ with $s \ge$ 0II: anchors placed parallel to horizontal joint $V \rightarrow \bullet$ 60120 $\alpha_{g,V,II}$ 0,1: anchors placed perpendicular to horizontal joint $V \rightarrow \bullet$ 60120 $\alpha_{g,V,II}$ 0,1. anchors placed perpendicular to horizontal joint $V \rightarrow \bullet$ 60120 $\alpha_{g,V,II}$ 1,1,5*hef120 $\alpha_{g,V,II}$ $\alpha_{g,V,II}$ 1,1,1,5*hef3*hef3*hef2,	perpendicular to	V	124		120	α _{g,V,J.}		2,0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	nonzontal joint	Hold I						
II: anchors placed parallel to horizontal joint 60 120 $\alpha_{g,v,ll}$ $0,$ $1:$ anchors placed perpendicular to horizontal joint $1,5^*hef$ 120 $\alpha_{g,v,ll}$ $[-]$ $0,$ $1,5^*hef$ 120 $\alpha_{g,v,ll}$ $1,$ $1,$ $1,$ $1,$ $1,$	Table C115: Group fac	tor for ancho		shear load	ling perpendic	ular to free	edge	
parallel to horizontal jointV90120 $\alpha_{g,V,II}$ 2,L: anchors placed perpendicular to horizontal joint $V \rightarrow \bullet$ 60120 $\alpha_{g,V,II}$ 1,1,5*hef120 $\alpha_{g,V,L}$ 1,1,1,1,5*hef3*hef3*hef2,		P					<u></u> 1	
joint901202 \bot : anchors placed perpendicular to horizontal joint $\overbrace{1,5^{*}hef}$ 120 $\alpha_{g,v,\perp}$ [-] $1,5^{*}hef$ 120 $\alpha_{g,v,\perp}$ 1, $1,5^{*}hef$ 3^{*}h_{ef}2,		ed T	60		120			0,6
L: anchors placed perpendicular to horizontal joint Image: second sec	Configuration	V			120	α _{g,V,II}		2,0
perpendicular to horizontal jointV- \bullet 1,5*hef120 $\alpha_{g,V,\perp}$ 1,1,5*hef3*her2,	Configuration II: anchors placed parallel to horizontal) V	90		100		F	0,6
horizontal joint 1,5*hef 3*h _{ef} 2,	Configuration II: anchors placed parallel to horizontal joint				120			1,0
Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry	Configuration II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to	V	60			$\alpha_{g,V,\perp}$		
Mungo Injection System MIT-SE Plus or MIT-COOL Plus for masonry	Configuration II: anchors placed parallel to horizontal joint L: anchors placed perpendicular to		60 1,5*hef		120	α _{g,V,⊥}		2,0
Performances solid light weight concrete brick - LAC Annex C 44	Configuration		60 1,5*hef 1,5*hef		120 3*h _{et}	αg,v,⊥		2,0

Deutsches Institut für Bautechnik

				Characteristic resistance								
Anchor size Sleev		Effective	d/d				Use catego	d/d w/d w/w				
	Sleeve	depth	40°C/24°C	80°C/50	°C 120°(C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	For all temperature range		
		h _{ef}		$N_{Rk,b} = N$	1) Rk,p			$N_{Rk,b} = N_{Rk,j}$	1) p	V _{Rk,b} ²⁾³⁾		
		[mm]					[kN]					
			Con	pressiv	e streng	th f _b ≥	2 N/mm ²					
M8	-	80	3,0	2,5	2	2,0	2,5	2,0	1,5	3,0		
M8 / M10/ IG-M6	-	90	3,0	3,0	2	2,0	2,5	2,5	2,0	3,0		
M10 / IG-M8	-	100	3,5	3,0	2	2,5	3,0	2,5	2,0	3,0		
M16 / IG-M10	-	100	3,0	3,0	2	2,0	3,0	3,0	2,0	3,0		
M8	12x80	80	2,5	2,5		2,0	2,5	2,0	1,5	3,0		
M8 / M10/	16x85	85	3,0	2,5		2,0	3,0	2,5	2,0	3,0		
IG-M6	16x130	130	3,0	2,5		2,0	3,0	2,5	2,0	3,0		
M12 / M16	20x85	85	2,5	2,5		2,0	2,5	2,5	2,0	3,0		
/ IG-M8 / IG-M10	20x130 20x200	130 200	2,5 2,5	2,5 2,5		2,0 2,0	2,5 2,5	2,5 2,5	2,0 2,0	3,0 3,0		
²⁾ For ca	lculation o alues are v	f V _{Rk,c} see E		ex C	-			0,8				
Anchor	size	Sleeve	Effective anchorage depth h _{ef}	Ν	δ _N / N	δ _{NC}	δ _Ν	» V	δ_{V0}	δ _{V∞}		
			[mm]	[kN] [I	mm/kN]	[mn	1] [mn	n] [kN] [mm]	[mm]		
M8		-	80									
M8 / M IG-M		-	90	0,86	0,50	0,4	3 0,8	6				
M10 / IG	à-M8	-	100	1,00	0,35	0,3	5 0,7	0				
M16 / IG	-M10	-	100	0,86	0,35	0,3	0 0,6	0				
M8		12x80	80		0,50	0,3	6 0,7	1 0,9	0,25	0,38		
M8 / M	10/	16x85	85							-,		
IG-M	_	16x130	130	0.71								
	1.0.1	20x85	85	0,71	0,35	0,2	5 0,5	0				
		20x130	130									
IG-M8 / IG	a-iviiu ⊢	20x200	200									

Mungo Injection	System M	MIT-SE I	Plus or	MIT-COOL	Plus for	masonrv
	-,					

200

Performances solid light weight concrete brick - LAC Characteristic values of resistance under tension and shear load Displacements

20x200