

Declaration of Performance

2873-CPR-M 530-7

1. Unique identification code of the product-type: Bonded injection type anchor Mungo MIT-SP/MIT-SPE Plus, MIT-SP Winter for use in non-cracked concrete

2. Manufacturer: Mungo Befestigungstechnik AG, Bornfeldstrasse 2, CH-4600 Olten/Switzerland

3. System/s of AVCP: System 1

4. Intended use or use/es:

Product	Intended use
Metal anchors for use in	For fixing and/or supporting to concrete, structural elements (which
concrete	contributes to the stability of the works) or heavy units.

5. European Assessment Document: ETAG 001-Part 1 and Part 5, edition 2013, used as EAD European Technical Assessment: ETA-13/0032 of 04/01/2017

Technical Assessment Body: ZUS – Technical and Test Institute for Construction Prague **Notified body/ies:** 2873 - IFSW

6. Declared performance:

Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension loads	See appendix, especially Annex C1
Characteristic resistance for shear loads	See appendix, especially Annex C2
Displacement	See appendix, especially Annex C3

Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Singed for and on behalf of the manufacturer by:

Robert Klemencic Dipl.-Ing., MBA Head of Engineering Olten, 29.04.2021

This DoP Has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail. The Appendix includes voluntary and complementary information in English language exceeding the (language as neutrally specified) legal requirements.

Mungo Befestigungstechnik AG Bornfeldstrasse 2 CH-4600 Olten · Switzerland Phone +41 62 206 75 75 Fax +41 62 206 75 85

mungo@mungo.swiss

EXCERPT 1/11

MUNGO Injection System for concrete MIT-SP / MIT-SPE Plus, MIT-SP Winter

Annex A 1

Product description Installed conditions

Page 5/15 of ETA 13/0032 issued on 04/01/2017 and replacing ETA 13/0032 issued on 15/01/2013 English translation by TZÚS Prague – branch TIS

EXCERPT 2/11

Cartridge: MIT-SP / MIT-SPE Plus, MIT-SP Winter

150 ml, 280 ml, 300 ml up to 330 ml and 380 ml up to 420 ml cartridge (Type: coaxial)

Sealing/Screw cap

Imprint: MIT-SP / MIT-SPE Plus, MIT-SP Winter processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), optional: with travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

165 ml and 300 ml cartridge (Type: "foil tube")

Static mixer

SM 14W

CM 8W

MUNGO Injection System for concrete MIT-SP / MIT-SPE Plus, MIT-SP Winter

Product description Injection system

Annex A 2

Page 6/15 of ETA 13/0032 issued on 04/01/2017 and replacing ETA 13/0032 issued on 15/01/2013 English translation by TZÚS Prague – branch TIS

EXCERPT 3/11

Table A1: Materials

Part	Designation	Material
Steel Steel	, zinc plated ≥ 5 µm acc. to EN ISO 4042:19 , hot-dip galvanised ≥ 40 µm acc. to EN ISC	99 or 0 1461:2009 and EN ISO 10684:2004+AC:2009
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:2001 Property class 4.6, 4.8, 5.8, 8.8, EN 1993-1-8:2005+AC:2009
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 or 4.8 rod) EN ISO 898-2:2012, Property class 5 (for class 5.8 rod) EN ISO 898-2:2012, Property class 8 (for class 8.8 rod) EN ISO 898-2:2012
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised
Stain	less steel	
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, Property class 70 EN ISO 3506-1:2009
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088-1:2005, Property class 70 (for class 70 rod) EN ISO 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005
High	corrosion resistant steel	
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2005, Property class 70 EN ISO 3506-1:2009
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:2005, Property class 70 (for class 70 rod) EN ISO 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:2005

MUNGO Injection System for concrete MIT-SP / MIT-SPE Plus, MIT-SP Winter

Annex A 4

Product description Materials

Page 8/15 of ETA 13/0032 issued on 04/01/2017 and replacing ETA 13/0032 issued on 15/01/2013 English translation by TZÚS Prague – branch TIS

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete

Temperature range:

- □ I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- □ II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009

Installation:

- Dry, wet or flooded bore holes.
- B Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site

MUNGO Injection System for concrete MIT-SP / MIT-SPE Plus, MIT-SP Winter

Intended use Specifications

Annex B 1

Page 9/15 of ETA 13/0032 issued on 04/01/2017 and replacing ETA 13/0032 issued on 15/01/2013 English translation by TZÚS Prague – branch TIS

[.]

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24		
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28		
Effective encharge depth	$h_{ef,min}[mm] =$	60	60	70	80	90	96		
Ellective anchorage depth	$h_{ef,max}[mm] =$	160	200	240	320	400	480		
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26		
Diameter of steel brush	d₀[mm] ≥	12	14	16	20	26	30		
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160		
Thickness of fixture	t _{fix,min} [mm] >	0							
	t _{fix,max} [mm] <	1500							
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d₀							
Minimum spacing	S _{min} [mm]	40	50	60	80	100	120		
Minimum edge distance	C _{min} [MM]	40	50	60	80	100	120		

Table B1: Installation parameters for threaded rod

Steel brush

Table B2: Parameter cleaning and setting tools

	I contract of the second se	r	
Threaded Rod	d₀ Drill bit - Ø	d⊾ Brush - Ø	d _{b,min} min. Brush - Ø
(mm)	(mm)	(mm)	(mm)
M8	10	12	10,5
M10	12	14	12,5
M12	14	16	14,5
M16	18	20	18,5
M20	24	26	24,5
M24	28	30	28,5

Hand pump (volume 750 ml) Drill bit diameter (d_o): 10 mm to 20 mm and anchorage depth up to 240 mm P

Recommended compressed air tool (min 6 bar) All applications

MUNGO Injection System for concrete MIT-SP / MIT-SPE Plus, MIT-SP Winter

Intended use Installation parameters Cleaning and setting tools

Annex B 2

Page 10/15 of ETA 13/0032 issued on 04/01/2017 and replacing ETA 13/0032 issued on 15/01/2013 English translation by TZÚS Prague – branch TIS

EXCERPT 7/11

Installation inst	ructions	
	1 Drill with hammer drill a hole into the base material to the required by the selected anchor (Table B1). In case of a shall be filled with mortar.	e size and embedment depth borted drill hole: the drill hole
1	Attention! Standing water in the bore hole must be r 2a Starting from the bottom or back of the bore hole, blow t	emoved before cleaning. he hole clean with
4x	compressed air (min. 6 bar) or a hand pump (Annex B2) the bore hole ground is not reached an extension shall b	a minimum of four times. If be used.
or	The hand-pump can be used for anchor sizes up to bore	e hole diameter 20 mm.
4x	For bore holes larger then 20 mm or deeper 240 mm, co must be used.	ompressed air (min. 6 bar)
*********	 2b Check brush diameter (Table B2) and attach the brush t or a battery screwdriver. Brush the hole with an appropr (Table B2) a minimum of four times. If the bore hole ground is not reached with the brush, a l shall be used (Table B2). 	o a drilling machine iate sized wire brush > d _{b,min} prush extension
4x	2c Finally blow the hole clean again with compressed air (n (Annex B2) a minimum of four times. If the bore hole gro extension shall be used. The hand-pump can be used for anchor sizes up to bore For bore holes larger than 20 mm or deeper 240 mm, co	nin. 6 bar) or a hand pump ound is not reached an e hole diameter 20 mm. ompressed air (min. 6 bar)
or	After cleaning the base hale bes to be protected age	ingt as contomination in an
4x	appropriate way, until dispensing the mortar in the k cleaning repeated has to be directly before dispensi In-flowing water must not contaminate the bore hole	ainst re-contamination in an pore hole. If necessary, the ng the mortar. again
	 Attach a supplied static-mixing nozzle to the cartridge ar correct dispensing tool. Cut off the foil tube clip before u 	nd load the cartridge into the se.
	For every working interruption longer than the recomme (Table B3) as well as for new cartridges, a new static-mi	nded working time ixer shall be used.
her	 Prior to inserting the anchor rod into the filled bore hole, depth shall be marked on the anchor rods. 	the position of the embedment
min, 3 full stroke	 Prior to dispensing into the drill hole, squeeze out separative strokes and discard non-uniformly mixed adhesive comp a consistent grey colour. For foil tube cartridges it must l full strokes. 	ately a minimum of three full ponents until the mortar shows be discarded a minimum of six
MUNGO Injection MIT-SP / MIT-SPE	System for concrete Plus, MIT-SP Winter	
Intended use Installation instruction	DNS	Annex B 3

Page 11/15 of ETA 13/0032 issued on 04/01/2017 and replacing ETA 13/0032 issued on 15/01/2013 English translation by TZÚS Prague – branch TIS

EXCERPT 8/11

Installation instr	ructions (continuation)
	6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. Observe the gel-/ working times given in Table B3.
	7. Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.
	8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).
+20°C	 Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B3).
Tree.	 After full curing, the add-on part can be installed with the max. torque (Table B1) by using a calibrated torque wrench.

Table B3: Minimum curing time

Concrete	MIT-SP / MI	IIT-SP / MIT-SPE Plus MIT-SP Winter		
temperature [°C]	working time [min]	minimum curing time [min]	working time [min]	minimum curing time [min]
-10 to -6			60	240
-5 to -1	90	360	45	120
0 to +4	45	180	25	80
+5 to +9	25	120	10	45
+10 to +14	20	100	4	25
+15 to +19	15	80	3	20
+20 to +29	6	45	2	15
+30 to +34	4	25		
+35 to +39	2	20		
Cartridge temperature	dge +5°C to +40°C		-5°C to	+30°C

MUNGO Injection System for concrete MIT-SP / MIT-SPE Plus, MIT-SP Winter

Intended use

Installation instructions (continuation) Curing time Annex B 4

Page 12/15 of ETA 13/0032 issued on 04/01/2017 and replacing ETA 13/0032 issued on 15/01/2013 English translation by TZÚS Prague – branch TIS

EXCERPT 9/11

Anchor size threaded roo	b			M 8	M 10	M 12	M 16	M 20	M24
Steel failure									
Characteristic tension resis	stance	N _{Rk,s}	[kN]			A _s >	k f _{uk}		
Combined pull-out and c	oncrete failure								
Characteristic bond resista	ince in non-cracked con	crete C20/2	25						
Temperature range I:	mperature range I: dry and wet concrete °C/24°C flooded bore hole		[N/mm ²]	8,5	8,0	8,0	8,0	8,0	8,0
40°C/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	8,5	8,0	8,0	8,0	8,0	8,0
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	6,5	6,0	6,0	6,0	6,0	6,0
80°C/50°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	6,5	6,0	6,0	6,0	6,0	6,0
		C2	25/30			1,0	04		
	Ca	30/37			1,0	08			
Increasing factors for conc	rete	Ca	35/45			1,	13		
Ψc		C4	40/50			1,1	15		
		C45/55				1,1	17		
		C5	50/60	1,19					
Factor according to CEN/TS 1992-4-5 Section	k ₈	[-]			10	9,1			
Concrete cone failure									
Factor according to CEN/TS 1992-4-5 Section	6.2.3.1	k _{ucr}	[-]			10	,1		
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}					
Axial distance		S _{cr,N}	[mm]	3,0 h _{ef}					
Splitting failure									
Edge distance		C _{cr,sp}	[mm]	$1,0 \cdot h \leq 2 \cdot h \left[2,5 - \frac{n}{h_{ef}} \right] \leq 2,4 \cdot h $					
Axial distance		S _{cr,sp}	[mm]			2 c	cr,sp		
Installation safety factor (d	ry and wet concrete)	$\gamma_2=\gamma_{inst}$	[-]			1,	2		
Installation safety factor (fl	ooded bore hole)	$\gamma_2 = \gamma_{inst}$	[-]			1,	2		

MUNGO Injection System for concrete MIT-SP / MIT-SPE Plus, MIT-SP Winter

Performances

Characteristic values under tension loads in non-cracked concrete

Annex C 1

Page 13/15 of ETA 13/0032 issued on 04/01/2017 and replacing ETA 13/0032 issued on 15/01/2013 English translation by TZÚS Prague – branch TIS

Table C2: Characteristic values under shear loads in non-cracked concrete

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24
Steel failure without lever arm								
Characteristic shear resistance,	V _{Rk,s}	[kN]			0,5 x A	∧ _s x f _{uk}		
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂	[-]			0,	8		
Steel failure with lever arm								
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]			1.2 x W	/ _{el} x f _{uk}		
Concrete pry-out failure								
Factor k_3 in equation (27) of CEN/TS 1992-4-5 Section 6.3.3 Factor k in equation (5.7) of Technical Report TR 029	k ₍₃₎	[-]	2,0					
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,	0		
Concrete edge failure								
Effective length of anchor	lf	[mm]	$I_f = min(h_{ef}; 8 d_{nom})$					
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,	0		

MUNGO Injection System for concrete MIT-SP / MIT-SPE Plus, MIT-SP Winter

Performances

Characteristic values under shear loads in non-cracked concrete

Annex C 2

Page 14/15 of ETA 13/0032 issued on 04/01/2017 and replacing ETA 13/0032 issued on 15/01/2013 English translation by TZÚS Prague – branch TIS

EXCERPT 11/11

Table C3:	Displacem	ent under tension	load ¹⁾					
Anchor size threade	ed rod		M 8	M 10	M 12	M 16	M 20	M24
Non-cracked concre	ete C20/25			•	•			•
-	δ _{N0} -factor	[mm/(N/mm²)]	0,03	0,04	0,05	0,07	0,08	0,10
I emperature range I: 40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,07	0,08	0,08	0,08	0,08	0,10
T	δ_{N0} -factor	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,04	0,05
l'emperature range II: 80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,15	0,17	0,17	0,17	0,17	0,17
Tablo C4: Dis	nlacomon	undor shoar load	1)					
			Mo	N 40	N 40	N 40	M 00	
For pop-cracked co	ncroto C20	/25	IVI O				IVI 20	IVIZ4
	Svo-factor	[mm/(kN)]	0.02	0.02	0.01	0.01	0.01	0.01
ranges	δv∞-factor	[mm/(kN)]	0,02	0,02	0.02	0.01	0,01	0,01
¹⁾ Calculation of the o δ _{V0} = δ _{V0} -factor · \ δ _{V∞} = δ _{V∞} -factor · \ MUNGO Injectio MIT-SP / MIT-SP	h System f	or concrete Г-SP Winter						
Performances Displacement						A	nnex C 3	}

Page 15/15 of ETA 13/0032 issued on 04/01/2017 and replacing ETA 13/0032 issued on 15/01/2013 English translation by TZÚS Prague – branch TIS